Abstract Fire regimes are influenced by both exogenous drivers (e.g., increases in atmospheric CO2and climate change) and endogenous drivers (e.g., vegetation and soil/litter moisture), which constrain fuel loads and fuel aridity. Herein, we identified how exogenous and endogenous drivers can interact to affect fuels and fire regimes in a semiarid watershed in the inland northwestern United States throughout the 21st century. We used a coupled ecohydrologic and fire regime model to examine how climate change and CO2scenarios influence fire regimes. In this semiarid watershed, we found an increase in burned area and burn probability in the mid‐21st century (2040s) as the CO2fertilization effect on vegetation productivity outstripped the effects of climate change‐induced fuel decreases, resulting in greater fuel loading. However, by the late‐21st century (2070s), climatic warming dominated over CO2fertilization, thus reducing fuel loading and burned area. Fire regimes were shown to shift from flammability‐ to fuel‐limited or become increasingly fuel‐limited in response to climate change. We identified a metric to identify when fire regimes shift from flammability‐ to fuel‐limited: the ratio of the change in fuel loading to the change in its aridity. The threshold value for which this metric indicates a flammability versus fuel‐limited regime differed between grasses and woody species but remained stationary over time. Our results suggest that identifying these thresholds in other systems requires narrowing uncertainty in exogenous drivers, such as future precipitation patterns and CO2effects on vegetation. 
                        more » 
                        « less   
                    
                            
                            Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
                        
                    
    
            Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and synoptic winds) overwhelm local controls on vegetation mortality patterns (e.g., vegetation structure and topography), we hypothesized that local controls remain important influences on burn severity patterns in these rugged forested landscapes. To study these influences, we developed remotely sensed fire extent and burn severity maps for two distinct weather periods, thereby isolating the effect of extreme east winds on drivers of burn severity. Our results confirm that wind was the major driver of the 2020 megafires, but also that both vegetation structure and topography significantly affect burn severity patterns even under extreme fuel aridity and winds. Early-seral forests primarily concentrated on private lands, burned more severely than their older and taller counterparts, over the entire megafire event regardless of topography. Meanwhile, mature stands burned severely only under extreme winds and especially on steeper slopes. Although climate change and land-use legacies may prime temperate rainforests to burn more frequently and at higher severities than has been historically observed, our work suggests that future high-severity megafires are only likely to occur during coinciding periods of heat, fuel aridity, and extreme winds. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10353231
- Date Published:
- Journal Name:
- Fire
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2571-6255
- Page Range / eLocation ID:
- 41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Extreme single-day fire spread events are associated with warmer and drier fire seasons and are expected to increase in the future. However, our understanding of the post-fire landscape outcomes of such events is limited. Here, we ask whether extreme events burn more severely or produce landscape patterns that are less conducive to forest recovery. To identify extreme single-day fire spread events, we used satellite fire detections to create day of burning (DOB) maps for 633 fire events >400 ha within forested ecoregions of the southwestern United States. We categorized daily rates of spread as extreme (top 2.5% of events; >4901 ha/day) and non-extreme (bottom 97.5%, <4901 ha/day). We contrasted satellite-measured burn severity and a suite of high severity patch landscape metrics between extreme and non-extreme spread events. We found that extreme single-day fire spread events were associated with increased severity, a greater proportion of area burned severely, and a higher percentage of like adjacencies between high severity pixels. Average distances from high severity patch interiors to edges were also greater in extreme single-day spread events. Additionally, area-weighted mean patch size and total core area of high severity patches were higher for fires containing one or more extreme single-day spread events. Larger and more homogenous high-severity patches produced during extreme events have been shown to limit tree seedling establishment, inhibiting forest recovery and facilitating vegetation type conversion. These landscape outcomes are expected to be magnified under future climate as extreme fire spread becomes more prevalent, accelerating fire-driven forest loss across the southwestern US.more » « less
- 
            Abstract Although natural disturbances such as wildfire, extreme weather events, and insect outbreaks play a key role in structuring ecosystems and watersheds worldwide, climate change has intensified many disturbance regimes, which can have compounding negative effects on ecosystem processes and services. Recent studies have highlighted the need to understand whether wildfire increases or decreases after large‐scale beetle outbreaks. However, observational studies have produced mixed results. To address this, we applied a coupled ecohydrologic‐fire regime‐beetle effects model (RHESSys‐WMFire‐Beetle) in a semiarid watershed in the western US. We found that in the red phase (0–5 years post‐outbreak), surface fire extent, burn probability, and surface and crown fire severity all decreased. In the gray phase (6–15 years post‐outbreak), both surface fire extent and surface and crown fire severity increased with increasing mortality. However, fire probability reached a plateau during high mortality levels (>50% in terms of carbon removed). In the old phase (one to several decades post‐outbreak), fire extent and severity still increased in all mortality levels. However, fire probability increased during low to medium mortality (≤50%) but decreased during high mortality levels (>50%). Wildfire responses also depended on the fire regime. In fuel‐limited locations, fire probability increased with increasing fuel loads, whereas in fuel‐abundant (flammability‐limited) systems, fire probability decreased due to decreases in fuel aridity from reduced plant water demand. This modeling framework can improve our understanding of the mechanisms driving wildfire responses and aid managers in predicting when and where fire hazards will increase.more » « less
- 
            Abstract Conifer forest resilience may be threatened by increasing wildfire activity and compound disturbances in western North America. Fire refugia enhance forest resilience, yet may decline over time due to delayed mortality—a process that remains poorly understood at landscape and regional scales. To address this uncertainty, we used high‐resolution satellite imagery (5‐m pixel) to map and quantify delayed mortality of conifer tree cover between 1 and 5 years postfire, across 30 large wildfires that burned within three montane ecoregions in the western United States. We used statistical models to explore the influence of burn severity, topography, soils, and climate moisture deficit on delayed mortality. We estimate that delayed mortality reduced live conifer tree cover by 5%–25% at the fire perimeter scale and 12%–15% at the ecoregion scale. Remotely sensed burn severity (1‐year postfire) was the strongest predictor of delayed mortality, indicating patch‐level fire effects are a strong proxy for fire injury severity among surviving trees that eventually perish. Delayed mortality rates were further influenced by long‐term average and short‐term postfire climate moisture deficits, illustrating the impact of drought on fire‐injured tree survival. Our work demonstrates that delayed mortality in conifer forests of the western United States can be remotely quantified at a fine grain and landscape scale, is a spatially extensive phenomenon, is driven by fire–climate–environment interactions, and has important ecological implications.more » « less
- 
            Abstract Extreme wildfires are increasing in frequency globally, prompting new efforts to mitigate risk. The ecological appropriateness of risk mitigation strategies, however, depends on what factors are driving these increases. While regional syntheses attribute increases in fire activity to both climate change and fuel accumulation through fire exclusion, they have not disaggregated causal drivers at scales where land management is implemented. Recent advances in fire regime modeling can help us understand which drivers dominate at management-relevant scales. We conducted fire regime simulations using historical climate and fire exclusion scenarios across two watersheds in the Inland Northwestern U.S., which occur at different positions along an aridity continuum. In one watershed, climate change was the key driver increasing burn probability and the frequency of large fires; in the other, fire exclusion dominated in some locations. We also demonstrate that some areas become more fuel-limited as fire-season aridity increases due to climate change. Thus, even within watersheds, fuel management must be spatially and temporally explicit to optimize effectiveness. To guide management, we show that spatial estimates of soil aridity (or temporally averaged soil moisture) can provide a relatively simple, first-order indicator of where in a watershed fire regime is climate vs. fuel-limited and where fire regimes are most vulnerable to change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    