skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data: Sucrose-mediated formation and adhesion strength of Streptococcus mutans biofilms on titanium
Bacterial biofilms associated with implants remain a significant source of infections in dental, implant, and other healthcare industries due to challenges in biofilm removal. Biofilms consist of bacterial cells surrounded by a matrix of extracellular polymeric substance (EPS), which protects the colony from many countermeasures, including antibiotic treatments. Biofilm EPS composition is also affected by environmental factors. In the oral cavity, the presence of sucrose affects the growth of Streptococcus mutans that produce acids, eroding enamel and forming dental caries. Biofilm formation on dental implants commonly leads to severe infections and failure of the implant. This work determines the effect of sucrose concentration on biofilm EPS formation and adhesion of Streptococcus mutans, a common oral colonizer. Bacterial biofilms are grown with varying concentrations of sucrose on titanium substrates simulating dental implant material. Strategies for measuring adhesion for films such as peel tests are inadequate for biofilms, which have low cohesive strength and will fall apart when tensile loading is applied directly. The laser spallation technique is used to apply a stress wave loading to the biofilm, causing the biofilm to delaminate at a critical tensile stress threshold. Biofilm formation and EPS structures are visualized at high magnification with scanning electron microscopy (SEM). Sucrose enhanced the EPS production of S. mutans biofilms and increased the adhesion strength to titanium, the most prevalent dental implant material. However, there exists a wide range of sucrose concentrations that are conducive for robust formation and adhesion of S. mutans biofilms on implant surfaces.  more » « less
Award ID(s):
2045853
PAR ID:
10353241
Author(s) / Creator(s):
; ;
Publisher / Repository:
Materials Data Facility
Date Published:
Subject(s) / Keyword(s):
biomaterials biofilms laser spallation scanning electron microscopy adhesion dental implants streptococcus mutans sucrose titanium experiment
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biofilm formation is a significant problem in America, accounting for 17 million infections, and causing 550,000 deaths annually. An understanding of factors that contribute to strong biofilm surface adhesion at implant interfaces can guide the development of surfaces that prevent deleterious biofilms and promote osseointegration. The aim of this research is to develop a metric that quantifies the adhesion strength differential between a bacterial biofilm and an osteoblast-like cell monolayer to a medical implant-simulant surface. This metric will be used to quantify the biocompatible effect of implant surfaces on bacterial and cell adhesion. The laser spallation technique employs a high-amplitude short-duration stress wave to initiate spallation of biological films. Attenuation of laser energy results in failure statistics across increasing fluence values, which are calibrated via interferometry to obtain interface stress values. Several metrology challenges were overcome including how membrane tension may influence laser spallation testing and how to determine stress wave characteristics when surface roughness precludes in situ displacement measurements via interferometry. Experiments relating loading region within biofilm to centroid of biofilm revealed that location played no role in failure rate. A reflective panel was implemented to measure stress wave characteristics on smooth and rough titanium, which showed no difference in peak compressive wave amplitude. After overcoming these metrology challenges, the adhesion strength of Streptococcus mutans biofilms and MG 63 monolayers on smooth and rough titanium substrates is measured. An Adhesion Index is developed by obtaining the ratio of cell adhesion to biofilm adhesion. This nondimensionalized parameter represents the effect of surface modifications on increases or decreases in biocompatibility. An increase in Adhesion Index value is calculated for roughened titanium compared to smooth titanium. The increase in Adhesion Index values indicates that the increase in surface roughness has a more positive biological response from MG 63 than does S. mutans. In this work further experiments quantifying impact of various surface coating including blood plasma, and adhesion proteins found within the extracellular matrix to expand the Adhesion Index. 
    more » « less
  2. Adhesion of bacteria to oral implant surfaces can lead to oral infections, and the prevention of strong biofilm adherence to implant surfaces can assist in the prevention of these infections like peri-implantitis. In prior studies, single species biofilm adhesion has been quantitatively measured via the laser spallation technique. However, colonizing oral biofilms rarely consists of a single bacteria species. Multiple early colonizer species, including several strains of Streptococci, dominate initial oral biofilm formation. This study aims to characterize the adhesion of a multi-species oral biofilm consisting of S. oralis, S. sanguinis, and S. gordonii on titanium, a common implant material, using the laser spallation technique. Previous work has established these specific Streptococci strains as a multi-species periodontal biofilm model. This study is the first to provide a quantitative adhesion measurement of this multi-species model onto a dental implant surface. First, adhesion strength of the multi-species model is compared to adhesion strength of the single-species streptococci constituents. Fluorescent staining and imaging by fluorescent microscopy are used to identify individual bacteria species within the biofilm. The multi-species biofilm presented in this study provides a more representative model of in vivo early biofilms and provides a more accurate metric for understanding biocompatibility on implant surfaces. 
    more » « less
  3. The prevalence of biofilm diseases, and dental caries in particular, have encouraged extensive research on S. mutans biofilms, including methods of preventing its formation. Numerous small molecules with specific anti-biofilm activity against this pathogen have been isolated and synthesized. Generally, these molecules can be characterized into three categories: sucrose-dependent anti-adhesion, sucrose-independent anti-adhesion and cellular signaling interference. This review aims to provide an overview of the current small molecule strategies used for targeting S. mutans biofilms, and a perspective of the future for the field. 
    more » « less
  4. null (Ed.)
    INTRODUCTION: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. METHODS: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) were used in this study. We were able to control the grain size of medical grade 304 and 316L stainless steel without altering their chemical composition (grain size range= 20μm-200nm) (4). Grain size control affected the nano-topography of the material surfaces which was measured by an Atomic Force Microscope (AFM). Grain sizes, such as 0.2, 0.5, 1, 2, 3, 9, and 10 μm, were used both polished and non-polished. All the stainless-steel samples were cleaned by treating with acetone and ethanol under sonication. Triplicates of all polished and non-polished samples with different grain sizes were subjected to magnetization of DM, 0.1T, 0.5T, and 1T, before seeding them with the bacteria. Controls were used in the form of untreated samples. Bacterial were grown in Tryptic Soy Broth (TSB). An actively growing bacterial suspension was seeded onto the stainless-steel discs into 24-well micro-titer plates and kept for incubation. After 24 hours of incubation, the stainless-steel discs were washed with Phosphate Buffer Saline (PBS) to remove the plankton bacteria and allow the sessile bacteria in the biofilm to remain. The degree of development of the bacterial biofilms on the stainless-steel discs were measured using spectrophotometric analysis. For this, the bacterial biofilm was removed from the stainless steel by sonication. The formation of biofilms was also determined by performing a biofilm staining method using Safranin. RESULTS SECTION: AFM results revealed a slight decrease in roughness by decreasing the grain size of the material. Moreover, the samples were segregated into two categories of polished and non-polished samples, in which polishing decreased roughness significantly. After careful analysis we found out that polished surfaces showed a higher degree for biofilm formation in comparison to the non-polished ones. We also observed that bacteria showed a higher rate for biofilm formation for the demagnetized samples, whereas 0.5T magnetization showed the least amount of biofilm formation. After 0.5T, there was no significant change in the rate of biofilm formation on the stainless-steel samples. Altogether, stainless steel samples containing 0.5 μm and less grainsize, and magnetized with 0.5 tesla and stronger magnets demonstrated the least degree of biofilm formation. DISCUSSION: In summary, the results demonstrate that controlling the grain size of medical grade stainless steel can control and mitigate bacterial responses on, and thus possibly infections of, orthopedic implants or other implantable devices. The research was funded by Komatsuseiki Kosakusho Co., Ltd (KSJ: Japan) SIGNIFICANCE/CLINICAL RELEVANCE: Orthopedic implants that more than 70% of them are made of metals (i.e., stainless steel, titanium, and cobalt-chromium alloys) are failing through loosening and breakage due to their limited mechanical properties. On the other hand, the risk of infection for these implants and its financial burden on our society is undeniable. We have seen that our uniformly nanograined stainless steel shows improved mechanical properties (i.e., higher stiffness, hardness, fatigue) as compared to conventional stainless steel along with the reduction of biofilm formation on its surface. These promising results made us to peruse the development of nanograined titanium and cobalt-chromium alloys for resolving the complications of orthopedic implants. 
    more » « less
  5. Abstract Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces onStreptococcus gordoniiand dental plaque‐derived multispecies biofilms. We observed that as shear forces increased,S. gordoniibiofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis ofS. gordoniibiofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. LikeS. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems. 
    more » « less