skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii
Abstract Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces onStreptococcus gordoniiand dental plaque‐derived multispecies biofilms. We observed that as shear forces increased,S. gordoniibiofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis ofS. gordoniibiofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. LikeS. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems.  more » « less
Award ID(s):
2236497
PAR ID:
10534336
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Oral Microbiology
Volume:
39
Issue:
6
ISSN:
2041-1006
Format(s):
Medium: X Size: p. 477-490
Size(s):
p. 477-490
Sponsoring Org:
National Science Foundation
More Like this
  1. van_Kessel, Julia C (Ed.)
    ABSTRACT Bacterial motility plays a crucial role in biofilm development, yet the underlying mechanism remains not fully understood. Here, we demonstrate that the flagellum-driven motility ofPseudomonas aeruginosaenhances biofilm formation by altering the orientation of bacterial cells, an effect controlled by shear stress rather than shear rate. By tracking wild-typeP. aeruginosaand its non-motile mutants in a microfluidic channel, we demonstrate that while non-motile cells align with the flow, many motile cells can orient toward the channel sidewalls, enhancing cell surface attachment and increasing biofilm cell density by up to 10-fold. Experiments with varying fluid viscosities further demonstrate that bacterial swimming speed decreases with increasing fluid viscosity, and the cell orientation scales with the shear stress rather than shear rate. Our results provide a quantitative framework to predict the role of motility in the orientation and biofilm development under different flow conditions and viscosities.IMPORTANCEBiofilms are ubiquitous in rivers, water pipes, and medical devices, impacting the environment and human health. While bacterial motility plays a crucial role in biofilm development, a mechanistic understanding remains limited, hindering our ability to predict and control biofilms. Here, we reveal how the motility ofPseudomonas aeruginosa, a common pathogen, influences biofilm formation through systematically controlled microfluidic experiments with confocal and high-speed microscopy. We demonstrate that the orientation of bacterial cells is controlled by shear stress. While non-motile cells primarily align with the flow, many motile cells overcome the fluid shear forces and reorient toward the channel sidewalls, increasing biofilm cell density by up to 10-fold. Our findings provide insights into how bacterial transition from free-swimming to surface-attached states under varying flow conditions, emphasizing the role of cell orientation in biofilm establishment. These results enhance our understanding of bacterial behavior in flow environments, informing strategies for biofilm management and control. 
    more » « less
  2. Bacterial biofilms associated with implants remain a significant source of infections in dental, implant, and other healthcare industries due to challenges in biofilm removal. Biofilms consist of bacterial cells surrounded by a matrix of extracellular polymeric substance (EPS), which protects the colony from many countermeasures, including antibiotic treatments. Biofilm EPS composition is also affected by environmental factors. In the oral cavity, the presence of sucrose affects the growth of Streptococcus mutans that produce acids, eroding enamel and forming dental caries. Biofilm formation on dental implants commonly leads to severe infections and failure of the implant. This work determines the effect of sucrose concentration on biofilm EPS formation and adhesion of Streptococcus mutans, a common oral colonizer. Bacterial biofilms are grown with varying concentrations of sucrose on titanium substrates simulating dental implant material. Strategies for measuring adhesion for films such as peel tests are inadequate for biofilms, which have low cohesive strength and will fall apart when tensile loading is applied directly. The laser spallation technique is used to apply a stress wave loading to the biofilm, causing the biofilm to delaminate at a critical tensile stress threshold. Biofilm formation and EPS structures are visualized at high magnification with scanning electron microscopy (SEM). Sucrose enhanced the EPS production of S. mutans biofilms and increased the adhesion strength to titanium, the most prevalent dental implant material. However, there exists a wide range of sucrose concentrations that are conducive for robust formation and adhesion of S. mutans biofilms on implant surfaces. 
    more » « less
  3. Abstract Biofilms can increase pathogenic contamination of drinking water, cause biofilm‐related diseases, alter the sediment erosion rate, and degrade contaminants in wastewater. Compared with mature biofilms, biofilms in the early‐stage have been shown to be more susceptible to antimicrobials and easier to remove. Mechanistic understanding of physical factors controlling early‐stage biofilm growth is critical to predict and control biofilm development, yet such understanding is currently incomplete. Here, we reveal the impacts of hydrodynamic conditions and microscale surface roughness on the development of early‐stagePseudomonas putidabiofilm through a combination of microfluidic experiments, numerical simulations, and fluid mechanics theories. We demonstrate that early‐stage biofilm growth is suppressed under high flow conditions and that the local velocity for early‐stageP. putidabiofilms (growth time < 14 h) to develop is about 50 μm/s, which is similar toP. putida's swimming speed. We further illustrate that microscale surface roughness promotes the growth of early‐stage biofilms by increasing the area of the low‐flow region. Furthermore, we show that the critical average shear stress, above which early‐stage biofilms cease to form, is 0.9 Pa for rough surfaces, three times as large as the value for flat or smooth surfaces (0.3 Pa). The important control of flow conditions and microscale surface roughness on early‐stage biofilm development, characterized in this study, will facilitate future predictions and managements of early‐stageP. putidabiofilm development on the surfaces of drinking water pipelines, bioreactors, and sediments in aquatic environments. 
    more » « less
  4. Adhesion of bacteria to oral implant surfaces can lead to oral infections, and the prevention of strong biofilm adherence to implant surfaces can assist in the prevention of these infections like peri-implantitis. In prior studies, single species biofilm adhesion has been quantitatively measured via the laser spallation technique. However, colonizing oral biofilms rarely consists of a single bacteria species. Multiple early colonizer species, including several strains of Streptococci, dominate initial oral biofilm formation. This study aims to characterize the adhesion of a multi-species oral biofilm consisting of S. oralis, S. sanguinis, and S. gordonii on titanium, a common implant material, using the laser spallation technique. Previous work has established these specific Streptococci strains as a multi-species periodontal biofilm model. This study is the first to provide a quantitative adhesion measurement of this multi-species model onto a dental implant surface. First, adhesion strength of the multi-species model is compared to adhesion strength of the single-species streptococci constituents. Fluorescent staining and imaging by fluorescent microscopy are used to identify individual bacteria species within the biofilm. The multi-species biofilm presented in this study provides a more representative model of in vivo early biofilms and provides a more accurate metric for understanding biocompatibility on implant surfaces. 
    more » « less
  5. Traxler, Matthew F. (Ed.)
    ABSTRACT Polymicrobial biofilms are present in many environments particularly in the human oral cavity where they can prevent or facilitate the onset of disease. While recent advances have provided a clear picture of both the constituents and their biogeographic arrangement, it is still unclear what mechanisms of interaction occur between individual species in close proximity within these communities. In this study, we investigated two mechanisms of interaction between the highly abundant supragingival plaque (SUPP) commensalCorynebacterium matruchotiiandStreptococcus mitiswhich are directly adjacent/attachedin vivo. We discovered thatC. matruchotiienhanced the fitness of streptococci dependent on its ability to detoxify streptococcal-produced hydrogen peroxide and its ability to oxidize lactate also produced by streptococci. We demonstrate that the fitness of adjacent streptococci was linked to that ofC. matruchotiiand that these mechanisms support the previously described “corncob” arrangement between these species but that this is favorable only in aerobic conditions. Furthermore, we utilized scanning electrochemical microscopy to quantify lactate production and consumption between individual bacterial cells for the first time, revealing that lactate oxidation provides a fitness benefit toS. mitisnot due to pH mitigation. This study describes mechanistic interactions between two highly abundant human commensals that can explain their observedin vivospatial arrangements and suggest a way by which they may help preserve a healthy oral bacterial community. IMPORTANCEAs the microbiome era matures, the need for mechanistic interaction data between species is crucial to understand how stable microbiomes are preserved, especially in healthy conditions where the microbiota could help resist opportunistic or exogenous pathogens. Here we reveal multiple mechanisms of interaction between two commensals that dictate their biogeographic relationship to each other in previously described structures in human supragingival plaque. Using a novel variation for chemical detection, we observed metabolite exchange between individual bacterial cells in real time validating the ability of these organisms to carry out metabolic crossfeeding at distal and temporal scales observedin vivo. These findings reveal one way by which these interactions are both favorable to the interacting commensals and potentially the host. 
    more » « less