Quantum computing hardware technologies have advanced during the past two decades, with the goal of building systems that can solve problems that are intractable on classical computers. The ability to realize large-scale systems depends on major advances in materials science, materials engineering, and new fabrication techniques. We identify key materials challenges that currently limit progress in five quantum computing hardware platforms, propose how to tackle these problems, and discuss some new areas for exploration. Addressing these materials challenges will require scientists and engineers to work together to create new, interdisciplinary approaches beyond the current boundaries of the quantum computing field.
- Award ID(s):
- 1839199
- NSF-PAR ID:
- 10353296
- Date Published:
- Journal Name:
- Science
- Volume:
- 372
- ISSN:
- 1095-9203
- Page Range / eLocation ID:
- 253
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the year-to-year gains in speeds of classical computers continue to taper off, computational chemists are increasingly examining quantum computing as a possible route to achieve greater computational performance. Quantum computers, built upon the properties of superposition, interference, and entanglement of quantum bits, offer, in principle, the possibility to outperform classical computers for solving many important classes of problems. In the field of chemistry, quantum algorithm development offers promising propositions for solving classically intractable problems in areas such as electronic structure, chemical quantum dynamics, spectroscopy, and cheminformatics. However, physical implementations of quantum computers are still in their infancy and have yet to outperform classical computers for useful computations. Still, quantum software development for chemistry is a highly active area of research. In this perspective, we summarize recent progress in the areas of quantum computing algorithms, hardware, and software, and we describe the challenges that remain for useful implementations of quantum computing for chemical applications.more » « less
-
Abstract Quantum technologies are poised to move the foundational principles of quantum physics to the forefront of applications. This roadmap identifies some of the key challenges and provides insights on material innovations underlying a range of exciting quantum technology frontiers. Over the past decades, hardware platforms enabling different quantum technologies have reached varying levels of maturity. This has allowed for first proof-of-principle demonstrations of quantum supremacy, for example quantum computers surpassing their classical counterparts, quantum communication with reliable security guaranteed by laws of quantum mechanics, and quantum sensors uniting the advantages of high sensitivity, high spatial resolution, and small footprints. In all cases, however, advancing these technologies to the next level of applications in relevant environments requires further development and innovations in the underlying materials. From a wealth of hardware platforms, we select representative and promising material systems in currently investigated quantum technologies. These include both the inherent quantum bit systems and materials playing supportive or enabling roles, and cover trapped ions, neutral atom arrays, rare earth ion systems, donors in silicon, color centers and defects in wide-band gap materials, two-dimensional materials and superconducting materials for single-photon detectors. Advancing these materials frontiers will require innovations from a diverse community of scientific expertise, and hence this roadmap will be of interest to a broad spectrum of disciplines.
-
Evolving threats against cryptographic systems and the increasing diversity of computing platforms enforce teaching cryptographic engineering to a wider audience. This paper describes the development of a new graduate course on hardware security taught at North Carolina State University. The course targets an audience with no background on cryptography or hardware vulnerabilities. The course focuses especially on post-quantum cryptosystems—the next-generation cryptosystems mitigating quantum computer attacks—and evolves into designing specialized hardware accelerators for post-quantum cryptography, executing sophisticated implementation attacks (e.g., side-channel and fault attacks), and building countermeasures on such hardware designs. We discuss the curriculum design, hands-on assignment’s development, final research project outcome, and the results obtained from the course together with the associated challenges. Our experience shows that such a course is feasible, can achieve its goals, and liked by the students, but there is room for improvement.more » « less
-
Quantum computing employs some quantum phenomena to process information. It has been hailed as the future of computing but it is plagued by serious hurdles when it comes to its practical realization. MemComputing is a new paradigm that instead employs non-quantum dynamical systems and exploits time non-locality (memory) to compute. It can be efficiently emulated in software and its path towards hardware is more straightforward. I will discuss some analogies between these two computing paradigms, and the major differences that set them apart.more » « less