Reliable projections of future changes in tropical cyclone (TC) characteristics are highly dependent on the ability of global climate models (GCMs) to simulate the observed characteristics of TCs (i.e., their frequency, genesis locations, movement, and intensity). Here, we investigate the performance of a suite of GCMs from the U.S. CLIVAR Working Group on Hurricanes in simulating observed climatological features of TCs in the Southern Hemisphere. A subset of these GCMs is also explored under three idealized warming scenarios. Two types of simulated TC tracks are evaluated on the basis of a commonly applied cluster analysis: 1) explicitly simulated tracks, and 2) downscaled tracks, derived from a statistical–dynamical technique that depends on the models’ large-scale environmental fields. Climatological TC properties such as genesis locations, annual frequency, lifetime maximum intensity (LMI), and seasonality are evaluated for both track types. Future changes to annual frequency, LMI, and the latitude of LMI are evaluated using the downscaled tracks where large sample sizes allow for statistically robust results. An ensemble approach is used to assess future changes of explicit tracks owing to their small number of realizations. We show that the downscaled tracks generally outperform the explicit tracks in relation to many of the climatological features of Southern Hemisphere TCs, despite a few notable biases. Future changes to the frequency and intensity of TCs in the downscaled simulations are found to be highly dependent on the warming scenario and model, with the most robust result being an increase in the LMI under a uniform 2°C surface warming.
- Award ID(s):
- 1652448
- PAR ID:
- 10353305
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 48
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
North Atlantic tropical cyclone (TC) activity under a high-emission scenario is projected using a statistical synthetic storm model coupled with nine Coupled Model Intercomparison Project Phase 6 (CMIP6) climate models. The ensemble projection shows that the annual frequency of TCs generated in the basin will decrease from 15.91 (1979-2014) to 12.16 (2075-2100), and TC activity will shift poleward and coast-ward. The mean of lifetime maximum intensity will increase from 66.50 knots to 75.04 knots. Large discrepancies in TC frequency and intensity projections are found among the nine CMIP6 climate models. The uncertainty in the projection of wind shear is the leading cause of the discrepancies in the TC climatology projection, dominating the uncertainties in the projection of thermodynamic parameters such as potential intensity and saturation deficit. The uncertainty in the projection of wind shear may be related to the different projections of horizontal gradient of vertically integrated temperature in the climate models, which can be induced by different parameterizations of physical processes including surface process, sea ice, and cloud feedback. Informed by the uncertainty analysis, a surrogate model is developed to provide the first-order estimation of TC activity in climate models based on large-scale environmental features.more » « less
-
null (Ed.)Abstract Sea level rise (SLR) and tropical cyclone (TC) climatology change could impact future flood hazards in Jamaica Bay—an urbanized back-barrier bay in New York—yet their compound impacts are not well understood. This study estimates the compound effects of SLR and TC climatology change on flood hazards in Jamaica Bay from a historical period in the late twentieth century (1980–2000) to future periods in the mid- and late-twenty-first century (2030–2050 and 2080–2100, under RCP8.5 greenhouse gas concentration scenario). Flood return periods are estimated based on probabilistic projections of SLR and peak storm tides simulated by a hydrodynamic model for large numbers of synthetic TCs. We find a substantial increase in the future flood hazards, e.g., the historical 100-year flood level would become a 9- and 1-year flood level in the mid- and late-twenty-first century and the 500-year flood level would become a 143- and 4-year flood level. These increases are mainly induced by SLR. However, TC climatology change would considerably contribute to the future increase in low-probability, high-consequence flood levels (with a return period greater than 100 year), likely due to an increase in the probability of occurrence of slow-moving but intense TCs by the end of twenty-first century. We further conduct high-resolution coastal flood simulations for a series of SLR and TC scenarios. Due to the SLR projected with a 5% exceedance probability, 125- and 1300-year flood events in the late-twentieth century would become 74- and 515-year flood events, respectively, in the late-twenty-first century, and the spatial extent of flooding over coastal floodplains of Jamaica Bay would increase by nearly 10 and 4 times, respectively. In addition, SLR leads to larger surface waves induced by TCs in the bay, suggesting a potential increase in hazards associated with wave runup, erosion, and damage to coastal infrastructure.more » « less
-
Abstract Tropical cyclones (TCs) that undergo rapid intensification (RI) before landfall are notoriously difficult to predict and have caused tremendous damage to coastal regions in the United States. Using downscaled synthetic TCs and physics‐based models for storm tide and rain, we investigate the hazards posed by TCs that rapidly intensify before landfall under both historical and future mid‐emissions climate scenarios. In the downscaled synthetic data, the percentage of TCs experiencing RI is estimated to rise across a significant portion of the North Atlantic basin. Notably, future climate warming causes large increases in the probability of RI within 24 hr of landfall. Also, our analysis shows that RI events induce notably higher rainfall hazard levels than non‐RI events with equivalent TC intensities. As a result, RI events dominate increases in 100‐year rainfall and storm tide levels under climate change for most of the US coastline.
-
Abstract Tropical cyclone intensification processes are explored in six high-resolution climate models. The analysis framework employs process-oriented diagnostics that focus on how convection, moisture, clouds, and related processes are coupled. These diagnostics include budgets of column moist static energy and the spatial variance of column moist static energy, where the column integral is performed between fixed pressure levels. The latter allows for the quantification of the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclone spinup, including surface flux feedbacks and cloud-radiative feedbacks. Tropical cyclones (TCs) are tracked in the climate model simulations and the analysis is applied along the individual tracks and composited over many TCs. Two methods of compositing are employed: a composite over all TC snapshots in a given intensity range, and a composite over all TC snapshots at the same stage in the TC life cycle (same time relative to the time of lifetime maximum intensity for each storm). The radiative feedback contributes to TC development in all models, especially in storms of weaker intensity or earlier stages of development. Notably, the surface flux feedback is stronger in models that simulate more intense TCs. This indicates that the representation of the interaction between spatially varying surface fluxes and the developing TC is responsible for at least part of the intermodel spread in TC simulation.