skip to main content


Title: Modeling the GRB 170202A Fireball from Continuous Observations with the Zadko and the Virgin Island Robotic Telescopes
Abstract We present coordinated observations of GRB 170202A carried out by the Zadko and the Virgin Island Robotic Telescopes. The observations started 59 s after the event trigger, and provided nearly continuous coverage for two days, due to the unique locations of these telescopes. We clearly detected an early rise in optical emission, followed by late optical flares. By complementing these data with archival observations, we show that GRB 170202A is well described by the standard fireball model if multiple reverse shocks are taken into account. Its fireball is evidenced as expanding within a constant-density interstellar medium, with most burst parameters being consistent with the usual ranges found in the literature. The electron and magnetic energy parameters ( ϵ e , ϵ B ) are orders of magnitude smaller than the commonly assumed values. We argue that the global fit of the fireball model achieved by our study should be possible for any burst, pending the availability of a sufficiently comprehensive data set. This conclusion emphasizes the crucial importance of coordinated observation campaigns of gamma-ray bursts, such as the one central to this work, to answer outstanding questions about the underlying physics driving these phenomena.  more » « less
Award ID(s):
1901296
NSF-PAR ID:
10353340
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a detailed prompt emission and early optical afterglow analysis of the two very-high-energy (VHE) detected bursts GRB 201015A and GRB 201216C, and their comparison with a subset of similar bursts. Time-resolved spectral analysis of multistructured GRB 201216C using the Bayesian binning algorithm revealed that during the entire duration of the burst, the low-energy spectral index ( α pt ) remained below the limit of the synchrotron line of death. However, statistically some of the bins supported the additional thermal component. Additionally, the evolution of spectral parameters showed that both the peak energy ( E p ) and α pt tracked the flux. These results were further strengthened using the values of the physical parameters obtained by synchrotron modeling of the data. Our earliest optical observations of both bursts using the F/Photometric Robotic Atmospheric Monitor Observatorio del Roque de los Muchachos and Burst Observer and Optical Transient Exploring System robotic telescopes displayed a smooth bump in their early optical light curves, consistent with the onset of the afterglow due to synchrotron emission from an external forward shock. Using the observed optical peak, we constrained the initial bulk Lorentz factors of GRB 201015A and GRB 201216C to Γ 0 = 204 and Γ 0 = 310, respectively. The present early optical observations are the earliest known observations constraining outflow parameters and our analysis indicate that VHE detected bursts could have a diverse range of observed luminosity within the detectable redshift range of present VHE facilities. 
    more » « less
  2. Abstract Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data. 
    more » « less
  3. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  4. ABSTRACT We report on detailed multiwavelength observations and analysis of the very bright and long GRB 210619B, detected by the Atmosphere-Space Interactions Monitor installed on the International Space Station and the Gamma-ray Burst Monitor (GBM) on-board the Fermi mission. Our main goal is to understand the radiation mechanisms and jet composition of GRB 210619B. With a measured redshift of z = 1.937, we find that GRB 210619B falls within the 10 most luminous bursts observed by Fermi so far. The energy-resolved prompt emission light curve of GRB 210619B exhibits an extremely bright hard emission pulse followed by softer/longer emission pulses. The low-energy photon index (αpt) values obtained using the time-resolved spectral analysis of the burst suggest a transition between the thermal (during harder pulse) to non-thermal (during softer pulse) outflow. We examine the correlation between spectral parameters and find that both peak energy and αpt exhibit the flux tracking pattern. The late time broad-band photometric data set can be explained within the framework of the external forward shock model with νm < νc < νx (where νm, νc, and νx are the synchrotron peak, cooling-break, and X-ray frequencies, respectively) spectral regime supporting a rarely observed hard electron energy index (p < 2). We find moderate values of host extinction of E(B − V) = 0.14 ± 0.01 mag for the small magellanic cloud extinction law. In addition, we also report late-time optical observations with the 10.4 m Gran Telescopio de Canarias placing deep upper limits for the host galaxy (z = 1.937), favouring a faint, dwarf host for the burst. 
    more » « less
  5. ABSTRACT

    GRB 230812B is a bright and relatively nearby (z = 0.36) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and submillimetre bands from the GRANDMA (Global Rapid Advanced Network for Multimessenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v ∼ 17 × 103 km s−1. We analyse the photometric data first using empirical fits of the flux and then with full Bayesian inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of 5.75 × 1042 erg s−1, at $15.76^{+0.81}_{-1.21}$ d (in the observer frame) after the trigger, with a half-max time width of 22.0 d. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fitting model favours a very low density environment ($\log _{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet’s core angle $\theta _{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm {deg}$ and viewing angle $\theta _{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm {deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump.

     
    more » « less