skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of an ultra-high purity NaI(Tl) crystal scintillator with the SABRE Proof-of-Principle detector
Abstract The SABRE experiment aims to detect the annual modulation of the dark matter interaction rate by means of ultra-high purity NaI(Tl) crystals. It focuses on the achievement of a very low background to carry out a model-independent and high sensitivity test of the long-standing DAMA result. SABRE has recently completed a Proof-of-Principle (PoP) phase at the Gran Sasso National Laboratory, devoted to assess the radiopurity of the crystals. The results on the radiopurity of a 3.4-kg NaI(Tl) crystal scintillator grown within the SABRE Collaboration and operated underground in the SABRE-PoP setup, will be reported and discussed. The amount of potassium content in the crystal, determined by direct counting of 40 K, is found to be < 4.7 ppb at 90% CL. The average background rate in the 1-6 keV energy region of interest (ROI) is 1.20 ± 0.05 counts/day/kg/keV, which is, for the first time, comparable with DAMA/LIBRA-phasel. Our background model indicates that this rate is dominated by 210 Pb, and that about half of this contamination is located in the PTFE reflector wrapped around the crystal. Ongoing developments aimed at a further reduction of radioactive contaminants in the crystal indicates that a background rate ≤ 0.3 counts/day/kg/keV in the ROI is within reach. This value represents a benchmark for the development of next-generation NaI(Tl) detector arrays for the direct detection of dark matter particles.  more » « less
Award ID(s):
2014198 1620085
PAR ID:
10353459
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2156
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SABRE is a dark matter direct detection experiment based on NaI(Tl) scintillating crystals. The primary goal of the experiment is to test the dark matter interpretation of the DAMA/LIBRA annual modulation signal. To reach its purpose, SABRE will operate an array of ultra-low background NaI(Tl) crystals within an active veto, based on liquid scintillator. Finally two twin detectors will be used, one in the northern hemisphere at Laboratori Nazionali del Gran Sasso, Italy (LNGS) and the other, first of its kind, in the southern hemisphere, in the Stawell Underground Physic Laboratory (SUPL). The collaboration has successfully developed a NaI(Tl) crystal with the impressive potassium content of about 4 ppb, according to the mass spectroscopy measurements. A value that, if confirmed, would be about 3 times lower than the DAMA/LIBRA crystals one. The first phase of the SABRE experiment, called SABRE Proof of Principle (PoP), aims to prove the achieved radiopurity by direct measurement of crystals at LNGS. This work reports the status of the PoP setup and the recent progresses on the development of low radioactivity NaI(Tl) crystals. 
    more » « less
  2. We present the characterization of a low background NaI(Tl) crystal for the SABRE North experiment. The crystal NaI-33, was studied in two different setups at Laboratori Nazionali del Gran Sasso, Italy. The Proof-of-Principle (PoP) detector was equipped with a liquid scintillator veto and collected data for about one month (90 kg \times × days). The PoP-dry setup consisted of NaI-33 in a purely passive shielding and collected data for almost one year (891 kg \times × days). The average background in the energy region of interest (1-6 keV) for dark matter search was 1.20 \pm ± 0.05 and 1.39 \pm ± 0.02 counts/day/kg/keV within the PoP and the PoP-dry setup, respectively. This result opens to a new shielding design for the physics phase of the SABRE North detector, that does not foresee the use of an organic liquid scintillator external veto, in compliance with the new safety and environmental requirements of Laboratori Nazionali del Gran Sasso. 
    more » « less
  3. Abstract SABRE is a dark matter direct detection experiment aiming to measure the annual modulation of the dark matter interaction rate in NaI(Tl) crystals. SABRE focuses on the achievement of an ultra-low background rate operating high-purity NaI(Tl) crystals in a liquid scintillator veto for active background rejection. Moreover, twin experiments will be located in both Northern and Southern hemispheres (Italy and Australia) to disentangle any possible contribution from seasonal or site-related effects. In this article the results of the first measurements with a NaI(Tl) crystal for the SABRE experiment performed at LNGS are presented. 
    more » « less
  4. The SABRE (Sodium-iodide with Active Background REjection) experiment is a new detector based on NaI(Tl) scintillating crystals for the dark matter detection through the annual modulation. With ultra-pure crystals and an active veto system, based on liquid scintillator surrounding the crystal array, SABRE will reach unprecedented low background and the highest sensitivity among the present NaI(Tl) experiments. Moreover SABRE will be the first dark matter search with twin detectors located in the North and South hemispheres, in Gran Sasso National Laboratories (LNGS), Italy, and Stawell Underground Laboratories (SUPL), Australia, respectively. The double location will help to quantify possible seasonal effects, and is a unique feature to identify a modulation of dark matter origins. SABRE is presently in the Proof-of-Principle (PoP) phase, with the goal to measure the crystal intrinsic and cosmogenic backgrounds of one 5 kg crystal and the active veto efficiency. We have performed a full geometry Monte Carlo simulation in order to evaluate the background contributions in the two distinct operation modes foreseen for the PoP: the potassium Measurement Mode (KMM) and the Dark Matter Measurement Mode (DMM), where the liquid scintillator detector is used in coincidence or anti-coincidence with the crystal, respectively. This paper presents the results of a detailed background simulation and the expected sensitivity for the SABRE full scale experiment. 
    more » « less
  5. Abstract We present here a characterization of the low background NaI(Tl) crystal NaI-33 based on a period of almost one year of data taking (891 kg$$\times $$ × days exposure) in a detector configuration with no use of organic scintillator veto. This remarkably radio-pure crystal already showed a low background in the SABRE Proof-of-Principle (PoP) detector, in the low energy region of interest (1–6 keV) for the search of dark matter interaction via the annual modulation signature. As the vetoable background components, such as$$^{40}$$ 40 K, are here sub-dominant, we reassembled the PoP setup with a fully passive shielding. We upgraded the selection of events based on a Boosted Decision Tree algorithm that rejects most of the PMT-induced noise while retaining scintillation signals with > 90% efficiency in 1–6 keV. We find an average background of 1.39 ± 0.02 counts/day/kg/keV in the region of interest and a spectrum consistent with data previously acquired in the PoP setup, where the external veto background suppression was in place. Our background model indicates that the dominant background component is due to decays of$$^{210}$$ 210 Pb, only partly residing in the crystal itself. The other location of$$^{210}$$ 210 Pb is the reflector foil that wraps the crystal. We now proceed to design the experimental setup for the physics phase of the SABRE North detector, based on an array of similar crystals, using a low radioactivity PTFE reflector and further improving the passive shielding strategy, in compliance with the new safety and environmental requirements of Laboratori Nazionali del Gran Sasso. 
    more » « less