skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Properties of the Lowest-metallicity Galaxies over the Redshift Range z = 0.2 to z = 1
Abstract Low-metallicity galaxies may provide key insights into the evolutionary history of galaxies. Galaxies with strong emission lines and high equivalent widths (rest-frame EW(H β ) ≳ 30 Å) are ideal candidates for the lowest-metallicity galaxies to z ∼ 1. Using a Keck/DEIMOS spectral database of about 18,000 galaxies between z = 0.2 and z = 1, we search for such extreme emission-line galaxies with the goal of determining their metallicities. Using the robust direct T e method, we identify eight new extremely metal-poor galaxies (XMPGs) with 12 + log O/H ≤7.65, including one at 6.949 ± 0.091, making it the lowest-metallicity galaxy reported to date at these redshifts. We also improve upon the metallicities for two other XMPGs from previous work. We investigate the evolution of H β using both instantaneous and continuous starburst models, finding that XMPGs are best characterized by continuous starburst models. Finally, we study the dependence on age of the buildup of metals and the emission-line strength.  more » « less
Award ID(s):
1715145
PAR ID:
10353699
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
935
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A tight positive correlation between the stellar mass and the gas-phase metallicity of galaxies has been observed at low redshifts. The redshift evolution of this correlation can strongly constrain theories of galaxy evolution. The advent of JWST allows probing the mass–metallicity relation at redshifts far beyond what was previously accessible. Here we report the discovery of two emission line galaxies at redshifts 8.15 and 8.16 in JWST NIRCam imaging and NIRSpec spectroscopy of targets gravitationally lensed by the cluster RX J2129.4+0005. We measure their metallicities and stellar masses along with nine additional galaxies at 7.2 <zspec< 9.5 to report the first quantitative statistical inference of the mass–metallicity relation atz≈ 8. We measure ∼0.9 dex evolution in the normalization of the mass–metallicity relation fromz≈ 8 to the local universe; at a fixed stellar mass, galaxies are 8 times less metal enriched atz≈ 8 compared to the present day. Our inferred normalization is in agreement with the predictions of FIRE simulations. Our inferred slope of the mass–metallicity relation is similar to or slightly shallower than that predicted by FIRE or observed at lower redshifts. We compare thez≈ 8 galaxies to extremely low-metallicity analog candidates in the local universe, finding that they are generally distinct from extreme emission line galaxies or “green peas,” but are similar in strong emission line ratios and metallicities to “blueberry galaxies.” Despite this similarity, at a fixed stellar mass, thez≈ 8 galaxies have systematically lower metallicities compared to blueberry galaxies. 
    more » « less
  2. ABSTRACT We analyse the rest-optical emission-line ratios of z ∼ 1.5 galaxies drawn from the Multi-Object Spectrometer for Infra-Red Exploration Deep Evolution Field (MOSDEF) survey. Using composite spectra, we investigate the mass–metallicity relation (MZR) at z ∼ 1.5 and measure its evolution to z = 0. When using gas-phase metallicities based on the N2 line ratio, we find that the MZR evolution from z ∼ 1.5 to z = 0 depends on stellar mass, evolving by $$\Delta \rm log(\rm O/H) \sim 0.25$$ dex at M*< $$10^{9.75}\, \mathrm{M}_{\odot }$$ down to $$\Delta \rm log(\rm O/H) \sim 0.05$$ at M* ≳ $$10^{10.5}\, \mathrm{M}_{\odot }$$. In contrast, the O3N2-based MZR shows a constant offset of $$\Delta \rm log(\rm O/H) \sim 0.30$$ across all masses, consistent with previous MOSDEF results based on independent metallicity indicators, and suggesting that O3N2 provides a more robust metallicity calibration for our z ∼ 1.5 sample. We investigated the secondary dependence of the MZR on star formation rate (SFR) by measuring correlated scatter about the mean M*-specific SFR and M*−$$\log (\rm O3N2)$$ relations. We find an anticorrelation between $$\log (\rm O/H)$$ and sSFR offsets, indicating the presence of a M*−SFR−Z relation, though with limited significance. Additionally, we find that our z ∼ 1.5 stacks lie along the z = 0 metallicity sequence at fixed μ = log (M*/M⊙) − 0.6 × $$\log (\rm SFR / M_{\odot } \, yr^{-1})$$ suggesting that the z ∼ 1.5 stacks can be described by the z = 0 fundamental metallicity relation (FMR). However, using different calibrations can shift the calculated metallicities off of the local FMR, indicating that appropriate calibrations are essential for understanding metallicity evolution with redshift. Finally, understanding how [N ii]/H α scales with galaxy properties is crucial to accurately describe the effects of blended [N ii] and H α on redshift and H α fiux measurements in future large surveys utilizing low-resolution spectra such as with Euclid and the Roman Space Telescope. 
    more » « less
  3. We present spatially-resolved rest-frame optical emission line maps of four galaxies at z∼2 observed with Keck/OSIRIS to study the physical conditions of the ISM at Cosmic Noon. Our analysis of strong emission line ratios in these galaxies reveals an offset from the local star-forming locus on the BPT diagram, but agrees with other star-forming galaxies at similar redshifts. Despite the offset towards higher [O III]λ5008/Hβ and [N II]λ6585/Hα, these strong-line ratios remain consistent with or below the maximum starburst threshold even in the inner ∼1 kpc region of the galaxies, providing no compelling evidence for central AGN activity. The galaxies also exhibit flat radial gas-phase metallicity gradients, consistent with previous studies of z∼2 galaxies and suggesting efficient radial mixing possibly driven by strong outflows from intense star formation. Overall, our results reveal the highly star-forming nature of these galaxies, with the potential to launch outflows that flatten metallicity gradients through significant radial gas mixing. Future observations with JWST/NIRSpec are crucial to detect fainter emission lines at higher spatial resolution to further constrain the physical processes and ionization mechanisms that shape the ISM during Cosmic Noon. 
    more » « less
  4. Abstract Existing star-forming vs. active galactic nucleus (AGN) classification schemes using optical emission-line diagnostics mostly fail for low-metallicity and/or highly star-forming galaxies, missing AGN in typicalz∼ 0 dwarfs. To recover AGN in dwarfs with strong emission lines (SELs), we present a classification scheme optimizing the use of existing optical diagnostics. We use Sloan Digital Sky Survey emission-line catalogs overlapping the volume- and mass-limited REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntex (ECO) surveys to determine the AGN percentage in SEL dwarfs. Our photoionization grids show that the [Oiii]/Hβversus [Sii]/Hαdiagram (Siiplot) and [Oiii]/Hβversus [Oi]/Hαdiagram (Oiplot) are less metallicity sensitive and more successful in identifying dwarf AGN than the popular [Oiii]/Hβversus [Nii]/Hαdiagnostic (Niiplot or “BPT diagram”). We identify a new category of “star-forming AGN” (SF-AGN) classified as star-forming by the Niiplot but as AGN by the Siiand/or Oiplots. Including SF-AGN, we find thez∼ 0 AGN percentage in dwarfs with SELs to be ∼3%–16%, far exceeding most previous optical estimates (∼1%). The large range in our dwarf AGN percentage reflects differences in spectral fitting methodologies between catalogs. The highly complete nature of RESOLVE and ECO allows us to normalize strong emission-line galaxy statistics to the full galaxy population, reducing the dwarf AGN percentage to ∼0.6%–3.0%. The newly identified SF-AGN are mostly gas-rich dwarfs with halo mass <1011.5M, where highly efficient cosmic gas accretion is expected. Almost all SF-AGN also have low metallicities (Z≲ 0.4Z), demonstrating the advantage of our method. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present constraints on the massive star and ionized gas properties for a sample of 62 star-forming galaxies at z ∼ 2.3. Using BPASS stellar population models, we fit the rest-UV spectra of galaxies in our sample to estimate age and stellar metallicity which, in turn, determine the ionizing spectrum. In addition to the median properties of well-defined subsets of our sample, we derive the ages and stellar metallicities for 30 high-SNR individual galaxies – the largest sample of individual galaxies at high redshift with such measurements. Most galaxies in this high-SNR subsample have stellar metallicities of 0.001 < Z* < 0.004. We then use Cloudy + BPASS photoionization models to match observed rest-optical line ratios and infer nebular properties. Our high-SNR subsample is characterized by a median ionization parameter and oxygen abundance, respectively, of log (U)med = −2.98 ± 0.25 and 12 + log (O/H)med = 8.48 ± 0.11. Accordingly, we find that all galaxies in our sample show evidence for α-enhancement. In addition, based on inferred log (U) and 12 + log (O/H) values, we find that the local relationship between ionization parameter and metallicity applies at z ∼ 2. Finally, we find that the high-redshift galaxies most offset from the local excitation sequence in the BPT diagram are the most α-enhanced. This trend suggests that α-enhancement resulting in a harder ionizing spectrum at fixed oxygen abundance is a significant driver of the high-redshift galaxy offset on the BPT diagram relative to local systems. The ubiquity of α-enhancement among z ∼ 2.3 star-forming galaxies indicates important differences between high-redshift and local galaxies that must be accounted for in order to derive physical properties at high redshift. 
    more » « less