skip to main content


Search for: All records

Award ID contains: 1715145

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a search for extreme emission line galaxies (EELGs) atz< 1 in the COSMOS and North Ecliptic Pole (NEP) fields with imaging from Subaru/Hyper Suprime-Cam (HSC) and a combination of new and existing spectroscopy. We select EELGs on the basis of substantial excess flux in thezbroad band, which is sensitive to Hαat 0.3 ≲z≲ 0.42 and [Oiii]λ5007 at 0.7 ≲z≲ 0.86. We identify 10,470 galaxies withzexcesses in the COSMOS data set and 91,385 in the NEP field. We cross-reference the COSMOS EELG sample with the zCOSMOS and DEIMOS 10k spectral catalogs, finding 1395 spectroscopic matches. We made an additional 71 (46 unique) spectroscopic measurements withY< 23 using the HYDRA multiobject spectrograph on the WIYN 3.5 m telescope, and 204 spectroscopic measurements from the DEIMOS spectrograph on the Keck II telescope, providing a total of 1441/10,470 spectroscopic redshifts for the EELG sample in COSMOS (∼14%). We confirm that 1418 (∼98%) are Hαor [Oiii]λ5007 emitters in the above stated redshift ranges. We also identify 240 redshifted Hαand [Oiii]λ5007 emitters in the NEP using spectra taken with WIYN/HYDRA and Keck/DEIMOS. Using broadband-selection techniques in thegricolor space, we distinguish between Hαand [Oiii]λ5007 emitters with 98.6% accuracy. We test our EELG selection by constructing Hαand [Oiii]λ5007 luminosity functions and comparing to recent literature results. We conclude that broadband magnitudes from HSC, the Vera C. Rubin Observatory, and other deep optical multiband surveys can be used to select EELGs in a straightforward manner.

     
    more » « less
  2. Abstract Recent evidence suggests that high-redshift Ly α emitting galaxies (LAEs) with log L ( Ly α ) > 43.5 erg s − 1 , referred to as ultraluminous LAEs (ULLAEs), may show less evolution than lower-luminosity LAEs in the redshift range z = 5.7–6.6. Here we explore the redshift evolution of the velocity widths of the Ly α emission lines in LAEs over this redshift interval. We use new wide-field, narrowband observations from Subaru/Hyper Suprime-Cam to provide a sample of 24 z = 6.6 and 12 z = 5.7 LAEs with log L ( Ly α ) > 43 erg s − 1 , all of which have follow-up spectroscopy from Keck/DEIMOS. Combining with archival lower-luminosity data, we find a significant narrowing of the Ly α lines in LAEs at log L ( Ly α ) < 43.25 erg s − 1 —somewhat lower than the usual ULLAE definition—at z = 6.6 relative to those at z = 5.7, but we do not see this in higher-luminosity LAEs. As we move to higher redshifts, the increasing neutrality of the intergalactic medium should increase the scattering of the Ly α lines, making them narrower. The absence of this effect in the higher-luminosity LAEs suggests they may lie in more highly ionized regions, self-shielding from the scattering effects of the intergalactic medium. 
    more » « less
  3. Abstract Low-metallicity galaxies may provide key insights into the evolutionary history of galaxies. Galaxies with strong emission lines and high equivalent widths (rest-frame EW(H β ) ≳ 30 Å) are ideal candidates for the lowest-metallicity galaxies to z ∼ 1. Using a Keck/DEIMOS spectral database of about 18,000 galaxies between z = 0.2 and z = 1, we search for such extreme emission-line galaxies with the goal of determining their metallicities. Using the robust direct T e method, we identify eight new extremely metal-poor galaxies (XMPGs) with 12 + log O/H ≤7.65, including one at 6.949 ± 0.091, making it the lowest-metallicity galaxy reported to date at these redshifts. We also improve upon the metallicities for two other XMPGs from previous work. We investigate the evolution of H β using both instantaneous and continuous starburst models, finding that XMPGs are best characterized by continuous starburst models. Finally, we study the dependence on age of the buildup of metals and the emission-line strength. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)