skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.  more » « less
Award ID(s):
1929292
PAR ID:
10353708
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
20
ISSN:
1420-3049
Page Range / eLocation ID:
6233
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evacuation planning is a crucial part of disaster management. However, joint optimization of its two essential components, routing and scheduling, with objectives such as minimizing average evacuation time or evacuation completion time, is a computationally hard problem. To approach it, we present MIP-LNS, a scalable optimization method that utilizes heuristic search with mathematical optimization and can optimize a variety of objective functions. We also present the method MIPLNS-SIM, where we combine agent-based simulation with MIP-LNS to estimate delays due to congestion, as well as, find optimized plans considering such delays. We use Harris County in Houston, Texas, as our study area. We show that, within a given time limit, MIP-LNS finds better solutions than existing methods in terms of three different metrics. However, when congestion dependent delay is considered, MIP-LNS-SIM outperforms MIP-LNS in multiple performance metrics. In addition, MIP-LNS-SIM has a significantly lower percent error in estimated evacuation completion time compared to MIP-LNS. 
    more » « less
  2. Abstract Wearable sweat sensors have the potential to revolutionize precision medicine as they can non‐invasively collect molecular information closely associated with an individual's health status. However, the majority of clinically relevant biomarkers cannot be continuously detected in situ using existing wearable approaches. Molecularly imprinted polymers (MIPs) are a promising candidate to address this challenge but haven't yet gained widespread use due to their complex design and optimization process yielding variable selectivity. Here, QuantumDock is introduced, an automated computational framework for universal MIP development toward wearable applications. QuantumDock utilizes density functional theory to probe molecular interactions between monomers and the target/interferent molecules to optimize selectivity, a fundamentally limiting factor for MIP development toward wearable sensing. A molecular docking approach is employed to explore a wide range of known and unknown monomers, and to identify the optimal monomer/cross‐linker choice for subsequent MIP fabrication. Using an essential amino acid phenylalanine as the exemplar, experimental validation of QuantumDock is performed successfully using solution‐synthesized MIP nanoparticles coupled with ultraviolet–visible spectroscopy. Moreover, a QuantumDock‐optimized graphene‐based wearable device is designed that can perform autonomous sweat induction, sampling, and sensing. For the first time, wearable non‐invasive phenylalanine monitoring is demonstrated in human subjects toward personalized healthcare applications. 
    more » « less
  3. Purpose This study aims to present theory, practice and original research findings to support the proposition that broad enquiry and problem-based learning (EPBL) approaches provide an appropriate pedagogical lens for sustainability educators to develop the knowledge and skills needed to work effectively within mission-oriented innovation policy (MIP) environments. Design/methodology/approach The research study comprised four elements, each of which used different research methods. The first element involved a literature review mapping the synergies between MIP and EPBL; the second element piloted the use of EPBL for undergraduate modules related to sustainability challenges; the third element involved external stakeholders in the co-creation of a postgraduate programme that brought together innovation and sustainability, with EPBL fundamental to the design and development; the fourth element curated and comparatively analysed international cases of EPBL in the context of MIP, and sustainability challenges in particular, highlighting the versatility of EPBL and the importance of creativity in EPBL design and implementation. Findings The systematic literature review reveals synergies between the key features of EPBL and defining characteristics of MIP, indicating the relevance of applying EPBL to support MIP. Two in situ pilots generated 13 recommendations on the benefits and operational challenges of applying EPBL. These recommendations informed the design and development of a postgraduate programme, involving a transdisciplinary consultation process with key industrial and societal stakeholders. Comparative analysis of four international case studies describing EPBL applied in practice in different international settings show there is no “one size fits all”. Instead, the application of EPBL to different sustainability challenges and for different learner groups demonstrates the versatility of the pedagogical approach and the creativity of the sustainability educators. Originality/value A discourse around the appropriate pedagogical methods and teaching/learning practice to equip the current and future workforce with the knowledge and skills to respond to MIP and global sustainability challenges is nascent but emerging. This paper makes a scientific and practical contribution to the discourse. The authors show how EPBL can underpin the design of programmes to provide learners with the knowledge and skills to support organisations working effectively within an MIP context, especially addressing sustainability challenges. The authors provide recommendations for educators seeking to embed EPBL within their curriculum and call for external stakeholders to proactively engage with educators to co-create programmes with context-specific outcomes. 
    more » « less
  4. Santhanam, Rahul (Ed.)
    The class MIP^* of quantum multiprover interactive proof systems with entanglement is much more powerful than its classical counterpart MIP [Babai et al., 1991; Zhengfeng Ji et al., 2020; Zhengfeng Ji et al., 2020]: while MIP = NEXP, the quantum class MIP^* is equal to RE, a class including the halting problem. This is because the provers in MIP^* can share unbounded quantum entanglement. However, recent works [Qin and Yao, 2021; Qin and Yao, 2023] have shown that this advantage is significantly reduced if the provers' shared state contains noise. This paper attempts to exactly characterize the effect of noise on the computational power of quantum multiprover interactive proof systems. We investigate the quantum two-prover one-round interactive system MIP^*[poly,O(1)], where the verifier sends polynomially many bits to the provers and the provers send back constantly many bits. We show noise completely destroys the computational advantage given by shared entanglement in this model. Specifically, we show that if the provers are allowed to share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential time) [Qin and Yao, 2021]. We also show that this collapse in power is due to the noise, rather than the O(1) answer size, by showing that allowing for noiseless EPR states gives the class the full power of RE = MIP^*[poly, poly]. Along the way, we develop two technical tools of independent interest. First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or which are Lipschitz continuous. 
    more » « less
  5. Drift counteraction optimal control (DCOC) aims at optimizing control to maximize the time (or a yield) until the system trajectory exits a prescribed set, which may represent safety constraints, operating limits, and/or efficiency requirements. To DCOC problems formulated in discrete time, conventional approaches were based on dynamic programming (DP) or mixed-integer programming (MIP), which could become computationally prohibitive for higher-order systems. In this paper, we propose a novel approach to discrete-time DCOC problems based on a nonlinear programming formulation with purely continuous variables. We show that this new continuous optimization-based approach leads to the same exit time as the conventional MIP-based approach, while being computationally more efficient than the latter. This is also illustrated by numerical examples representing the drift counteraction control for an indoor airship. 
    more » « less