skip to main content


Title: Applying enquiry and problem based learning to mission-oriented innovation policy: from policy to pedagogy to teaching and learning practice
Purpose This study aims to present theory, practice and original research findings to support the proposition that broad enquiry and problem-based learning (EPBL) approaches provide an appropriate pedagogical lens for sustainability educators to develop the knowledge and skills needed to work effectively within mission-oriented innovation policy (MIP) environments. Design/methodology/approach The research study comprised four elements, each of which used different research methods. The first element involved a literature review mapping the synergies between MIP and EPBL; the second element piloted the use of EPBL for undergraduate modules related to sustainability challenges; the third element involved external stakeholders in the co-creation of a postgraduate programme that brought together innovation and sustainability, with EPBL fundamental to the design and development; the fourth element curated and comparatively analysed international cases of EPBL in the context of MIP, and sustainability challenges in particular, highlighting the versatility of EPBL and the importance of creativity in EPBL design and implementation. Findings The systematic literature review reveals synergies between the key features of EPBL and defining characteristics of MIP, indicating the relevance of applying EPBL to support MIP. Two in situ pilots generated 13 recommendations on the benefits and operational challenges of applying EPBL. These recommendations informed the design and development of a postgraduate programme, involving a transdisciplinary consultation process with key industrial and societal stakeholders. Comparative analysis of four international case studies describing EPBL applied in practice in different international settings show there is no “one size fits all”. Instead, the application of EPBL to different sustainability challenges and for different learner groups demonstrates the versatility of the pedagogical approach and the creativity of the sustainability educators. Originality/value A discourse around the appropriate pedagogical methods and teaching/learning practice to equip the current and future workforce with the knowledge and skills to respond to MIP and global sustainability challenges is nascent but emerging. This paper makes a scientific and practical contribution to the discourse. The authors show how EPBL can underpin the design of programmes to provide learners with the knowledge and skills to support organisations working effectively within an MIP context, especially addressing sustainability challenges. The authors provide recommendations for educators seeking to embed EPBL within their curriculum and call for external stakeholders to proactively engage with educators to co-create programmes with context-specific outcomes.  more » « less
Award ID(s):
1828010
NSF-PAR ID:
10344112
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of International Education in Business
Volume:
15
Issue:
1
ISSN:
1836-3261
Page Range / eLocation ID:
52 to 73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Team- and project-based pedagogies are increasingly normative in engineering education and beyond. Student teamwork holds the promise of developing collaborative skills deemed essential for new engineers by professional accreditation bodies such as ABET. The emphasis on these models, furthermore, reflects developments in pedagogical theory, stressing the importance of experiential learning and the social construction of knowledge, repositioning the instructor as a facilitator and guide. Teamwork in an educational context differs from that in professional contexts in that learning outcomes for all team members – both in terms of technical knowledge and team-working skills – are a primary goal of the activity, even while more tangible task-related outcomes might be the main concern of the students themselves. However, team-based learning also holds the potential for team members to have negative experiences, of which instructors may have little or no awareness, especially in real-time. Teams may achieve team-level outcomes required for successful completion, in spite of uneven levels of participation and contribution. Reduced participation on the part of an individual team member may have many causes, pro-active or reactive: it may be a deliberate refusal to engage, a lack of self-confidence, or a response to hostility from other members, among other possibilities. Inequitable team interactions will lead to uneven uptake of desired learning outcomes. Fostering equity in interactions and identifying inequitable practices among team members is therefore an important part of implementing team-based pedagogies, and an essential first step in identifying and challenging systematic patterns of inequity with regard to members of historically marginalized groups. This paper will therefore explore ways in which equity in group decision-making may be conceptualized and observed, laying the foundations for identifying and addressing inequities in the student experience. It will begin by considering different potential manifestations of interactional equity, surveying notions derived from prior education research in the fields of health, mathematics, engineering, and the natural sciences. These notions include: equity of participation on the basis of quantified vocal contributions (in terms of words, utterances, or clausal units); distribution and evolution of interactional roles; equity of idea endorsement and uptake; distribution of inchargeness and influence; equity of access to positional identities and discourse practices; and team member citizenship. In the paper’s empirical component, we trial measures of equity taken or developed from this literature on a small dataset of transcripts showing verbal interactions between undergraduate student team members in a first-year engineering design course. Some measures will be qualitative and others quantitative, depending on the particular form and manifestation of equity they are designed to examine. Measures include manual coding of speech acts and interactional ‘bids’, statistical measures of utterance frequency and length, and computational approaches to modeling interactional features such as social impact and receptivity. Results are compared with the students’ own reflections on the interactions, taken immediately afterward. Recommendations are made for the application of the measures, both from research and practice perspectives. Keywords: Teamwork, Equity, Interaction, Design 
    more » « less
  2. WIP: Assessing the Creative Person, Process and Product in Engineering Education This evidence-based practice paper provides guidance in assessing creativity in engineering education. In the last decade, a number of vision statements on the future of engineering education (e.g. Educating the Engineer of 2020, the ASCE Body of Knowledge) point to the fact that creativity is essential to engineering innovation; it is regarded as an important attribute in the education of engineers in order to meet the most urgent national challenges and to drive economic growth in the new millennium. Yet studies suggest that engineering students’ creative skills are being left underdeveloped or diminish over the course of their studies, or worse, that students who consider themselves to be creative are being driven away from engineering as a chosen field. On the surface, creativity skills are perceived as difficult to utilize in the engineering classroom, primarily due to the didactic nature of science and engineering instruction. Assessing the product of open ended or ill-structured assignments remains a difficult task as well. This study examines available assessments for creativity that are founded in three of the Four Ps of creativity: person, process, product (the fourth P, press, is not considered in this work.) The intent is to identify verified metrics that can be used to quantify creativity with a particular look to whether the metrics are appropriate for creativity, particularly as they pertain to the science and engineering domains. These metrics are examined for applicability to science and engineering, ease of administration and completion, expertise required to score, cost to administer, and time required to administer. Rather than determining the “best” metrics, this examination will provide guidelines for engineering educators and researchers interested in creativity for selecting appropriate metrics to be used in classrooms and research studies based on metric attributes. 
    more » « less
  3. The Belmont Forum and the Inter-American Institute for Global Change Research (IAI) organized an online training workshop on transdisciplinary (TD) approaches at the Sustainability, Research, and Innovation Congress (SRI) in 2022. The IAI is an intergovernmental organization that brings together 19 countries from the Americas to support adaptation to the world’s changing environment. The Belmont Forum is a consortium of major funders and international science councils to promote knowledge about sustainability science. The workshop aimed to create a safe environment for participants to share their impressions of and experiences about transdisciplinary research, using the Americas (IAI mandate) as a launching point for TD approaches globally. The workshop consisted of two online sessions: Transdisciplinary Approach 101 and Transdisciplinary Case Studies. The objectives of the current workshop report are: 1) to identify the key takeaways regarding common challenges and opportunities for transdisciplinary practice among workshop participants’ experiences, upon which to base recommendations for best practices, e.g., managing power imbalances, conflicting priorities and timeframes, enhancing communication and consolidating contextual awareness. 2) to offer insights to build better strategies for “train the trainers'' processes around transdisciplinarity, especially in congresses and short-term events, including using an experience-based approach, offering specific tools and increasing the participation of non-academic partners. This report encourages the implementation of other training processes by experienced transdisciplinary researchers, practitioners, and funders, in order to build capacities for collaborative approaches in diverse scientific communities. 
    more » « less
  4. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  5. There is growing evidence of the effectiveness of project-based learning (PBL) in preparing students to solve complex problems. In PBL implementations in engineering, students are treated as professional engineers facing projects centered around real-world problems, including the complexity and uncertainty that influence such problems. Not only does this help students to analyze and solve an authentic real-world task, promoting critical thinking, but also students learn from each other, learning valuable communication and teamwork skills. Faculty play an important part by assuming non-conventional roles (e.g., client, senior professional engineer, consultant) to help students throughout this instructional and learning approach. Typically in PBLs, students work on projects over extended periods of time that culminate in realistic products or presentations. In order to be successful, students need to learn how to frame a problem, identify stakeholders and their requirements, design and select concepts, test them, and so on. Two different implementations of PBL projects in a fluid mechanics course are presented in this paper. This required, junior-level course has been taught since 2014 by the same instructor. The first PBL project presented is a complete design of pumped pipeline systems for a hypothetical plant. In the second project, engineering students partnered with pre-service teachers to design and teach an elementary school lesson on fluid mechanics concepts. With the PBL implementations, it is expected that students: 1) engage in a deeper learning process where concepts can be reemphasized, and students can realize applicability; 2) develop and practice teamwork skills; 3) learn and practice how to communicate effectively to peers and to those from other fields; and 4) increase their confidence working on open-ended situations and problems. The goal of this paper is to present the experiences of the authors with both PBL implementations. It explains how the projects were scaffolded through the entire semester, including how the sequence of course content was modified, how team dynamics were monitored, the faculty roles, and the end products and presentations. Students' experiences are also presented. To evaluate and compare students’ learning and satisfaction with the team experience between the two PBL implementations, a shortened version of the NCEES FE exam and the Comprehensive Assessment of Team Member Effectiveness (CATME) survey were utilized. Students completed the FE exam during the first week and then again during the last week of the semester in order to assess students’ growth in fluid mechanics knowledge. The CATME survey was completed mid-semester to help faculty identify and address problems within team dynamics, and at the end of the semester to evaluate individual students’ teamwork performance. The results showed that no major differences were observed in terms of the learned fluid mechanics content, however, the data showed interesting preliminary observations regarding teamwork satisfaction. Through reflective assignments (e.g., short answer reflections, focus groups), student perceptions of the PBL implementations are discussed in the paper. Finally, some of the challenges and lessons learned from implementing both projects multiple times, as well as access to some of the PBL course materials and assignments will be provided. 
    more » « less