skip to main content


Title: Distributed Q-Learning with State Tracking for Multi-agent Networked Control
This paper studies distributed Q-learning for Linear Quadratic Regulator (LQR) in a multi-agent network. The existing results often assume that agents can observe the global system state, which may be infeasible in large-scale systems due to privacy concerns or communication constraints. In this work, we consider a setting with unknown system models and no centralized coordinator. We devise a state tracking (ST) based Q-learning algorithm to design optimal controllers for agents. Specifically, we assume that agents maintain local estimates of the global state based on their local information and communications with neighbors. At each step, every agent updates its local global state estimation, based on which it solves an approximate Q-factor locally through policy iteration. Assuming a decaying injected excitation noise during the policy evaluation, we prove that the local estimation converges to the true global state, and establish the convergence of the proposed distributed ST-based Q-learning algorithm. The experimental studies corroborate our theoretical results by showing that our proposed method achieves comparable performance with the centralized case.  more » « less
Award ID(s):
2202126 2203412
NSF-PAR ID:
10353735
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AAMAS '21: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent SystemsMay 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In multi-agent reinforcement learning (MARL), it is challenging for a collection of agents to learn complex temporally extended tasks. The difficulties lie in computational complexity and how to learn the high-level ideas behind reward functions. We study the graph-based Markov Decision Process (MDP), where the dynamics of neighboring agents are coupled. To learn complex temporally extended tasks, we use a reward machine (RM) to encode each agent’s task and expose reward function internal structures. RM has the capacity to describe high-level knowledge and encode non-Markovian reward functions. We propose a decentralized learning algorithm to tackle computational complexity, called decentralized graph-based reinforcement learning using reward machines (DGRM), that equips each agent with a localized policy, allowing agents to make decisions independently based on the information available to the agents. DGRM uses the actor-critic structure, and we introduce the tabular Q-function for discrete state problems. We show that the dependency of the Q-function on other agents decreases exponentially as the distance between them increases. To further improve efficiency, we also propose the deep DGRM algorithm, using deep neural networks to approximate the Q-function and policy function to solve large-scale or continuous state problems. The effectiveness of the proposed DGRM algorithm is evaluated by three case studies, two wireless communication case studies with independent and dependent reward functions, respectively, and COVID-19 pandemic mitigation. Experimental results show that local information is sufficient for DGRM and agents can accomplish complex tasks with the help of RM. DGRM improves the global accumulated reward by 119% compared to the baseline in the case of COVID-19 pandemic mitigation. 
    more » « less
  2. Policy gradient methods have become popular in multi-agent reinforcement learning, but they suffer from high variance due to the presence of environmental stochasticity and exploring agents (i.e., non-stationarity), which is potentially worsened by the difficulty in credit assignment. As a result, there is a need for a method that is not only capable of efficiently solving the above two problems but also robust enough to solve a variety of tasks. To this end, we propose a new multi-agent policy gradient method, called Robust Local Advantage (ROLA) Actor-Critic. ROLA allows each agent to learn an individual action-value function as a local critic as well as ameliorating environment non-stationarity via a novel centralized training approach based on a centralized critic. By using this local critic, each agent calculates a baseline to reduce variance on its policy gradient estimation, which results in an expected advantage action-value over other agents’ choices that implicitly improves credit assignment. We evaluate ROLA across diverse benchmarks and show its robustness and effectiveness over a number of state-of-the-art multi-agent policy gradient algorithms. 
    more » « less
  3. Economic dispatch in a multi-microgrid (MMG) system involves an increasing number of states from distributed energy resources (DERs) compared to a single microgrid. In these cases, traditional reinforcement learning (RL) approaches may become computationally expensive or less effective in finding the least-cost solution. This paper presents a novel RL approach that employs local learning agents to interact with individual microgrid environments in a distributed manner and a global agent to search for actions to minimize system cost at the MMG system level. The proposed distributed RL framework is more efficient in learning the dispatch policy compared to conventional approaches. Case studies are performed on a 3-microgrid system with different types of DERs. Results substantiate the effectiveness of the proposed approach in comparison with conventional methods in terms of operation costs, computation time, and peak-to-average ratio. 
    more » « less
  4. null (Ed.)
    In this article, we propose a novel semicentralized deep deterministic policy gradient (SCDDPG) algorithm for cooperative multiagent games. Specifically, we design a two-level actor-critic structure to help the agents with interactions and cooperation in the StarCraft combat. The local actor-critic structure is established for each kind of agents with partially observable information received from the environment. Then, the global actor-critic structure is built to provide the local design an overall view of the combat based on the limited centralized information, such as the health value. These two structures work together to generate the optimal control action for each agent and to achieve better cooperation in the games. Comparing with the fully centralized methods, this design can reduce the communication burden by only sending limited information to the global level during the learning process. Furthermore, the reward functions are also designed for both local and global structures based on the agents' attributes to further improve the learning performance in the stochastic environment. The developed method has been demonstrated on several scenarios in a real-time strategy game, i.e., StarCraft. The simulation results show that the agents can effectively cooperate with their teammates and defeat the enemies in various StarCraft scenarios. 
    more » « less
  5. Synchronizing decisions across multiple agents in realistic settings is problematic since it requires agents to wait for other agents to terminate and communicate about termination reliably. Ideally, agents should learn and execute asynchronously instead. Such asynchronous methods also allow temporally extended actions that can take different amounts of time based on the situation and action executed. Unfortunately, current policy gradient methods are not applicable in asynchronous settings, as they assume that agents synchronously reason about action selection at every time step. To allow asynchronous learning and decision-making, we formulate a set of asynchronous multi-agent actor-critic methods that allow agents to directly optimize asynchronous policies in three standard training paradigms: decentralized learning, centralized learning, and centralized training for decentralized execution. Empirical results (in simulation and hardware) in a variety of realistic domains demonstrate the superiority of our approaches in large multi-agent problems and validate the effectiveness of our algorithms for learning high-quality and asynchronous solutions. 
    more » « less