Marine mammals in the North Atlantic have experienced severe depletions due to overexploitation. While some species and populations have now recovered, there are numerous other anthropogenic activities impacting their North Atlantic ecosystem. Studying marine mammals is often associated with logistical challenges, and many species have an elusive nature, resulting in substantial knowledge gaps on the distribution, abundance and diversity of marine mammals in the North Atlantic. Environmental DNA (eDNA) is an emerging tool in biodiversity monitoring and has successfully been demonstrated to complement traditional monitoring methods for a wide range of marine taxonomic groups. The promising potential of seawater eDNA is owe to advances within an array of molecular methods used to extract, detect and/or sequence the genetic material of marine organisms from a single seawater sample. We present a literature review of eDNA studies of marine mammals and discuss the potential applications and practical challenges of eDNA in marine mammal research, management and conservation. Environmental DNA has already been introduced to a wide range of applications within marine mammal science, from detection of endangered species to population genetic assessments. Furthermore, eDNA has the power to capture other biologically important species in the marine ecosystem and food web, which could facilitate insight into the spatiotemporal variation of different marine communities in a changing environment. With methodological and technological standardization, eDNA based approaches have a promising potential to be integrated into regular monitoring practices and management strategies.
more »
« less
Calcium isotope compositions as a means to trace carbonate recycling
Marine carbonate, an important CO2 reservoir, is continuously sent to the Earth's deep interior at subduction zones, forming an essential part of the global carbon cycle. The pros and cons of using calcium isotope compositions to trace marine carbonates recycled into the mantle are discussed in this Perspective.
more »
« less
- Award ID(s):
- 1942042
- PAR ID:
- 10353834
- Date Published:
- Journal Name:
- National Science Review
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2095-5138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Whole microbial communities regularly merge with one another, often in tandem with their environments, in a process called community coalescence. Such events impose substantial changes: abiotic perturbation from environmental blending and biotic perturbation of community merging. We used an aquatic mixing experiment to unravel the effects of these perturbations on the whole microbiome response and on the success of individual taxa when distinct freshwater and marine communities coalesce. We found that an equal mix of freshwater and marine habitats and blended microbiomes resulted in strong convergence of the community structure toward that of the marine microbiome. The enzymatic potential of these blended microbiomes in mixed media also converged toward that of the marine, with strong correlations between the multivariate response patterns of the enzymes and of community structure. Exposing each endmember inocula to an axenic equal mix of their freshwater and marine source waters led to a 96% loss of taxa from our freshwater microbiomes and a 66% loss from our marine microbiomes. When both inocula were added together to this mixed environment, interactions amongst the communities led to a further loss of 29% and 49% of freshwater and marine taxa, respectively. Under both the axenic and competitive scenarios, the diversity lost was somewhat counterbalanced by increased abundance of microbial taxa that were too rare to detect in the initial inocula. Our study emphasizes the importance of the rare biosphere as a critical component of microbial community responses to community coalescence.more » « less
-
null (Ed.)Sustainable development (SD) policies targeting marine economic sectors, designed to alleviate poverty and conserve marine ecosystems, have proliferated in recent years. Many developing countries are providing poor fishing households with new fishing boats (fishing capital) that can be used further offshore as a means to improve incomes and relieve fishing pressure on nearshore fish stocks. These kinds of policies are a marine variant of traditional SD policies focused on agriculture. Here, we evaluate ex ante economic and environmental impacts of provisions of fishing and agricultural capital, with and without enforcement of fishing regulations that prohibit the use of larger vessels in nearshore habitats. Combining methods from development economics, natural resource economics, and marine ecology, we use a unique dataset and modeling framework to account for linkages between households, business sectors, markets, and local fish stocks. We show that the policies investing capital in local marine fisheries or agricultural sectors achieve income gains for targeted households, but knock-on effects lead to increased harvest of nearshore fish, making them unlikely to achieve conservation objectives in rural coastal economies. However, pairing an agriculture stimulus with increasing enforcement of existing fisheries’ regulations may lead to a win–win situation. While marine-based policies could be an important tool to achieve two of the United Nations Sustainable Development Goals (alleviate poverty and protect vulnerable marine resources), their success is by no means assured and requires consideration of land and marine socioeconomic linkages inherent in rural economies.more » « less
-
ABSTRACT Two-component sensory (TCS) systems link microbial physiology to the environment and thus may play key roles in biogeochemical cycles. In this study, we surveyed the TCS systems of 328 diverse marine bacterial species. We identified lifestyle traits such as copiotrophy and diazotrophy that are associated with larger numbers of TCS system genes within the genome. We compared marine bacterial species with 1,152 reference bacterial species from a variety of habitats and found evidence of extra response regulators in marine genomes. Examining the location of TCS genes along the circular bacterial genome, we also found that marine bacteria have a large number of “orphan” genes, as well as many hybrid histidine kinases. The prevalence of “extra” response regulators, orphan genes, and hybrid TCS systems suggests that marine bacteria break with traditional understanding of how TCS systems operate. These trends suggest prevalent regulatory networking, which may allow coordinated physiological responses to multiple environmental signals and may represent a specific adaptation to the marine environment. We examine phylogenetic and lifestyle traits that influence the number and structure of two-component systems in the genome, finding, for example, that a lack of two-component systems is a hallmark of oligotrophy. Finally, in an effort to demonstrate the importance of TCS systems to marine biogeochemistry, we examined the distribution of Prochlorococcus/Synechococcus response regulator PMT9312_0717 in metaproteomes of the tropical South Pacific. We found that this protein’s abundance is related to phosphate concentrations, consistent with a putative role in phosphate regulation. IMPORTANCE Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment.more » « less
-
Interannual variations in marine net primary production (NPP) contribute to the variability of available living marine resources, as well as influence critical carbon cycle processes. Here we provide a global overview of near‐term (1 to 10 years) potential predictability of marine NPP using a novel set of initialized retrospective decadal forecasts from an Earth System Model. Interannual variations in marine NPP are potentially predictable in many areas of the ocean 1 to 3 years in advance, from temperate waters to the tropics, showing a substantial improvement over a simple persistence forecast. However, some regions, such as the subpolar Southern Ocean, show low potential predictability. We analyze how bottom‐up drivers of marine NPP (nutrients, light, and temperature) contribute to its predictability. Regions where NPP is primarily driven by the physical supply of nutrients (e.g., subtropics) retain higher potential predictability than high‐latitude regions where NPP is controlled by light and/or temperature (e.g., the Southern Ocean). We further examine NPP predictability in the world's Large Marine Ecosystems. With a few exceptions, we show that initialized forecasts improve potential predictability of NPP in Large Marine Ecosystems over a persistence forecast and may aid to manage living marine resources.more » « less
An official website of the United States government

