skip to main content

Title: Evaluating sustainable development policies in rural coastal economies
Sustainable development (SD) policies targeting marine economic sectors, designed to alleviate poverty and conserve marine ecosystems, have proliferated in recent years. Many developing countries are providing poor fishing households with new fishing boats (fishing capital) that can be used further offshore as a means to improve incomes and relieve fishing pressure on nearshore fish stocks. These kinds of policies are a marine variant of traditional SD policies focused on agriculture. Here, we evaluate ex ante economic and environmental impacts of provisions of fishing and agricultural capital, with and without enforcement of fishing regulations that prohibit the use of larger vessels in nearshore habitats. Combining methods from development economics, natural resource economics, and marine ecology, we use a unique dataset and modeling framework to account for linkages between households, business sectors, markets, and local fish stocks. We show that the policies investing capital in local marine fisheries or agricultural sectors achieve income gains for targeted households, but knock-on effects lead to increased harvest of nearshore fish, making them unlikely to achieve conservation objectives in rural coastal economies. However, pairing an agriculture stimulus with increasing enforcement of existing fisheries’ regulations may lead to a win–win situation. While marine-based policies could be an more » important tool to achieve two of the United Nations Sustainable Development Goals (alleviate poverty and protect vulnerable marine resources), their success is by no means assured and requires consideration of land and marine socioeconomic linkages inherent in rural economies. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1734999
Publication Date:
NSF-PAR ID:
10275846
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
52
Page Range or eLocation-ID:
33170 to 33176
ISSN:
0027-8424
Sponsoring Org:
National Science Foundation
More Like this
  1. A new generation of poverty programs around the globe provides cash payments to poor and vulnerable households. Studies show that these social cash transfer programs create income and welfare benefits for poor households and the local economies where they live. However, this may come at the cost of damaging local environments if cash payments stimulate food production that conflicts with natural resource conservation. Evaluations of the economic impacts of poverty programs do not account for the welfare consequences of environmental impacts, which are potentially large for poor communities closely tied to natural resources. We use an ex-ante policy simulation tool,more »a bioeconomic local computable general equilibrium model parameterized with microsurvey data, to analyze the expected welfare consequences of environmental degradation caused by a cash transfer program. For a Philippine fishing community that is a net importer of fish, we show that a government cash transfer program initially increases real incomes for all households. However, increased demand for fish leads to a decline in the local fish stock that reduces program benefits. Household groups experience declines in real income benefits of 2–63%, with fishing households suffering the largest declines. Impacts on local fish stocks depend on the extent to which markets link fishing communities to outside regions through trade. Greater market integration can mitigate the fish stock decline, but this reduces the local income benefits of cash transfers.« less
  2. Sustainable provision of food, energy and clean water requires understanding of the interdependencies among systems as well as the motivations and incentives of farmers and rural policy makers. Agriculture lies at the heart of interactions among food, energy and water systems. It is an increasingly energy intensive enterprise, but is also a growing source of energy. Agriculture places large demands on water supplies while poor practices can degrade water quality. Each of these interactions creates opportunities for modeling driven by sensor-based and qualitative data collection to improve the effectiveness of system operation and control in the short term as wellmore »as investments and planning for the long term. The large volume and complexity of the data collected creates challenges for decision support and stakeholder communication. The DataFEWSion National Research Traineeship program aims to build a community of researchers that explores, develops and implements effective data-driven decision-making to efficiently produce food, transform primary energy sources into energy carriers, and enhance water quality. The initial cohort includes PhD students in agricultural and biosystems, chemical, and industrial engineering as well as statistics and crop production and physiology. The project aims to prepare trainees for multiple career paths such as research scientist, bioeconomy entrepreneur, agribusiness leader, policy maker, agriculture analytics specialist, and professor. The traineeship has four key components. First, trainees will complete a new graduate certificate to build competencies in fundamental understanding of interactions among food production, water quality and bioenergy; data acquisition, visualization, and analytics; complex systems modeling for decision support; and the economics, policy and sociology of the FEW nexus. Second, they will conduct interdisciplinary research on (a) technologies and practices to increase agriculture’s contributions to energy supply while reducing its negative impacts on water quality and human health; (b) data science to increase crop productivity within the constraints of sustainable intensification; or (c) decision sciences to manage tradeoffs and promote best practices among diverse stakeholders. Third, they will participate in a new graduate learning community to consist of a two-year series of workshops that focus in alternate years on the context of the Midwest agricultural FEW nexus and professional development; and fourth, they will have small-group experiences to promote collaboration and peer review. Each trainee will create and curate a portfolio that combines artifacts from coursework and research with reflections on the broader impacts of their work. Trainee recruitment emphasizes women and underrepresented groups.« less
  3. The overexploitation of coral reef fisheries threatens the persistence of reef ecosystems and the livelihoods and food security of millions of people. Market-based initiatives to increase fisheries sustainability have been widely implemented in industrialized commodity fisheries, but the suitability of these initiatives for coral reef fisheries has not been systematically investigated. Here, we present a typology of market-based interventions and coral reef fisheries sectors and identity promising approaches for each fishery archetype. For high value, export-oriented reef fisheries that are highly unsustainable (live reef food fish and dried sea cucumbers), traditional regulatory efforts including trade restrictions will be most effective.more »For high-value, export-oriented fisheries for highly fecund invertebrates (lobsters and mollusks), certification and ratings efforts, fishery improvement projects, and sustainable purchasing commitments can improve fishing practices and increase fisher market access and revenue. For lower-value fisheries targeting species for domestic or regional consumption, sustainable purchasing commitments among local buyers, consumer awareness campaigns, and local certification and ratings schemes hold promise for shifting attitudes toward sustainability and increasing food security for local communities. Finally, fisher empowerment efforts including direct access to local markets and market information, training on improved post-harvest methods, and formation of fisher associations hold promise for increasing fisher incomes, reducing wasteful catch, increasing food security, and de-incentivizing unsustainable practices. Despite the potential of market-based interventions, specific approaches must be carefully tailored to the ecological and social reality of these systems, including the inherent unsustainability of commercial coral reef fisheries, the limited capacity for fisheries governance, the limited financial support of market-based initiatives, and the threatened status of coral reef ecosystems globally.« less
  4. Small pelagic fish support some of the largest fisheries globally, yet there is an ongoing debate about the magnitude of the impacts of environmental processes and fishing activities on target species. We use a nonparametric, nonlinear approach to quantify these effects on the Pacific sardine (Sardinops sagax) in the Gulf of California. We show that the effect of fishing pressure and environmental variability are comparable. Furthermore, when predicting total catches, the best models account for both drivers. By using empirical dynamic programming with average environmental conditions, we calculated optimal policies to ensure long-term sustainable fisheries. The first policy, the equilibriummore »maximum sustainable yield, suggests that the fishery could sustain an annual catch of ∼2.16 × 10 5 tonnes. The second policy with dynamic optimal effort, reveals that the effort from 2 to 4 years ago impacts the current maximum sustainable effort. Consecutive years of high effort require a reduction to let the stock recover. Our work highlights a new framework that embraces the complex processes that drive fisheries population dynamics yet produces simple and robust advice to ensure long-term sustainable fisheries.« less
  5. Managed aquifer recharge (MAR) is typically used to enhance the agricultural water supply but may also be promising to maintain summer streamflows and temperatures for cold-water fish. An existing aquifer model, water temperature data, and analysis of water administration were used to assess potential benefits of MAR to cold-water fisheries in Idaho’s Snake River. This highly-regulated river supports irrigated agriculture worth US $10 billion and recreational trout fisheries worth $100 million. The assessment focused on the Henry’s Fork Snake River, which receives groundwater from recharge incidental to irrigation and from MAR operations 8 km from the river, addressing (1) themore »quantity and timing of MAR-produced streamflow response, (2) the mechanism through which MAR increases streamflow, (3) whether groundwater inputs decrease the local stream temperature, and (4) the legal and administrative hurdles to using MAR for cold-water fisheries conservation in Idaho. The model estimated a long-term 4%–7% increase in summertime streamflow from annual MAR similar to that conducted in 2019. Water temperature observations confirmed that recharge increased streamflow via aquifer discharge rather than reduction in river losses to the aquifer. In addition, groundwater seeps created summer thermal refugia. Measured summer stream temperature at seeps was within the optimal temperature range for brown trout, averaging 14.4 °C, whereas ambient stream temperature exceeded 19 °C, the stress threshold for brown trout. Implementing MAR for fisheries conservation is challenged by administrative water rules and regulations. Well-developed and trusted water rights and water-transaction systems in Idaho and other western states enable MAR. However, in Idaho, conservation groups are unable to engage directly in water transactions, hampering MAR for fisheries protection.« less