skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Communication—Design of Heated Cells for In Situ Absorption and Reflectance UV–Vis Spectroelectrochemistry
Spectroelectrochemistry (SEC) enables in-operando UV–vis study of electrochemical cells to explore the evolution of different cell components and understand cell mechanisms. Researchers have demonstrated various custom UV–vis cell designs to accommodate SEC experiments. However, existing designs do not easily permit temperature ramp techniques to examine the effects of rapidly changing cell temperature or high temperature conditions on cell mechanisms. This communication presents two easy-to-replicate, low-cost cell designs that are incorporable with existing UV–vis systems (transmittance, reflectance) and enable high temperature, rapid heating SEC experiments. Each cell design was tested to evaluate temperature ramp and sealing performance.  more » « less
Award ID(s):
1936636
PAR ID:
10353870
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
169
Issue:
6
ISSN:
0013-4651
Page Range / eLocation ID:
066502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dissolved organic matter (DOM) impacts the structure and function of aquatic ecosystems. DOM absorbs light in the UV and visible (UV–Vis) wavelengths, thus impacting light attenuation. Because absorption by DOM depends on its composition, UV–Vis absorbance is used to constrain DOM composition, source, and amount. Ferric iron, Fe(III), also absorbs in the UV–Vis; when Fe(III) is present, DOM-attributed absorbance is overestimated. Here, we explore how differing behavior of DOM and Fe(III) at the catchment scale impacts UV–Vis absorbance and evaluate how system-specific variability impacts the effectiveness of existing Fe(III) correction factors in a temperate watershed. We sampled five sites in the Connecticut River mainstem bi-weekly for ~ 1.5 years, and seven sites in the Connecticut River watershed once during the summer 2019. We utilized size fractionation to isolate the impact of DOM and Fe(III) on absorbance and show that variable contributions of Fe(III) to absorbance at 254 nm (a 254 ) and 412 nm (a 412 ) by size fraction complicates correction for Fe(III). We demonstrate that the overestimation of DOM-attributed absorbance by Fe(III) is correlated to the Fe(III):dissolved organic carbon concentration ratio; thus, overestimation can be high even when Fe(III) is low. a 254 overestimation is highly variable even within a single system, but can be as high as 53%. Finally, we illustrate that UV-Vis overestimation might impart bias to seasonal, discharge, and land-use trends in DOM quality. Together, these findings argue that Fe(III) should be measured in tandem with UV–Vis absorbance for estimates of CDOM composition or amount. 
    more » « less
  2. UV–vis spectrophotometry and spectrofluorometry are indispensable tools in education, research, and industrial process controls with widespread applications in nanoscience encompassing diverse nanomaterials and fields. Nevertheless, the prevailing spectroscopic interpretations and analyses often exhibit ambiguity and errors, particularly evident in the nanoscience literature. This analytical chemistry Perspective focuses on fostering evidence-based data interpretation in experimental studies of materials’ UV–vis absorption, scattering, and fluorescence properties. We begin by outlining common issues observed in UV–vis and fluorescence analysis. Subsequently, we provide a summary of recent advances in commercial UV–vis spectrophotometric and spectrofluorometric instruments, emphasizing their potential to enhance scientific rigor in UV–vis and fluorescence analysis. Furthermore, we propose potential avenues for future developments in spectroscopic instrumentation and measurement strategies, aiming to further augment the utility of optical spectroscopy in nano research for samples where optical complexity surpasses existing tools. Through a targeted focus on the critical issues related to UV–vis and fluorescence properties of nanomaterials, this Perspective can serve as a valuable resource for researchers, educators, and practitioners. 
    more » « less
  3. Abstract Most exposed middle- and lower-crustal shear zones experienced deformation while cooling. We investigated the effect of the strengthening associated with such cooling on differential stress estimates based on recrystallized grain size. Typical geologic ratios of temperature change per strain unit were applied in Griggs Rig (high pressure-temperature deformation apparatus) general shear experiments on quartzite with cooling rates of 2–10 °C/h from 900 °C to 800 °C, and a shear strain rate of ∼2 × 10−5 s−1. Comparisons between these “cooling-ramp” experiments and control experiments at constant temperatures of 800 °C and 900 °C indicated that recrystallized grain size did not keep pace with evolving stress. Mean recrystallized grain sizes of the cooling-ramp experiments were twice as large as expected from the final stresses of the experiments. The traditional approach to piezometry involves a routine assumption of a steady-state microstructure, and this would underestimate the final stress during the cooling-ramp experiments by ∼40%. Recrystallized grain size in the cooling-ramp experiments is a better indicator of the average stress of the experiments (shear strains ≥3). Due to the temperature sensitivity of recrystallization processes and rock strength, the results may underrepresent the effect of cooling in natural samples. Cooling-ramp experiments produced wider and more skewed grain-size distributions than control experiments, suggesting that analyses of grain-size distributions might be used to quantify the degree to which grain size departs from steady-state values due to cooling, and thereby provide more accurate constraints on final stress. 
    more » « less
  4. Abstract Purpose of ReviewThe share of asynchronous inverter-based resources is increasing in many electricity systems, displacing synchronous generators. This leads to a decreasing level of system inertia, which threatens electricity-system stability. This dynamic raises the question of how to secure sufficient levels of inertia. One possibility is taking a market-based approach to incentivize the installation of inertia-providing equipment. To this end, this paper reviews market designs to reimburse inertia provision that are discussed in the literature. Recent FindingsWe find five distinct market designs to remunerate inertia that are discussed in the literature—bilateral negotiation, tendering, auctions, bonus systems, and integrating inertia-related constraints into energy-market models. In addition, there are other approaches that are not based on a market mechanism—penalties, regulatory obligations, self-provision by electricity-system operators, and redispatch. We examine current approaches that are employed by Ireland, Great Britain, Australia, and Germany, which demonstrate the real-world use of these theoretical designs. We assess the five market designs based on their advantages and disadvantages. SummaryWe find that there is not a single market design that outperforms the othersvis-à-visall market-performance indicators. Which market design is suited best for a specific use case depends upon the particular circumstances. A solely market-based solution may not be sufficient to secure electricity-system stability and should be enriched with regulatory guidelines to mitigate the risk of market failure. 
    more » « less
  5. Electrospray deposition (ESD) is employed to produce separator membranes for coin-cell lithium-ion batteries (LIBs) using off-the-shelf polyimide (PI). The PI coatings are deposited directly onto planar LiNi0.6Mn0.2Co0.2O2 (NMC) electrodes via self-limiting electrospray deposition (SLED). Scanning electron microscopy (SEM), optical microscopy, and spectroscopic microreflectometry are implemented in combination to evaluate the porosity, thickness, and morphology of sprayed PI films. Furthermore, ultraviolet-visual wavelength spectroscopy (UV vis) is utilized to qualitatively assess variation in film porosity within a temperature range of 20-400oC, to determine the stable temperature range of the separator. UV vis results underscore the ability of the SLED PI separator to maintain its porous microstructure up to ~350oC. Electrochemical performance of the PI separators is analyzed via charge/discharge cycle rate tests. Discharge capacities of the SLED PI separators are within 83-99.8% of commercial Celgard 2325 PP/PE/PP separators. This study points to the unique possibility of SLED as a separator manufacturing technique for geometrically complex energy storage systems. Further research is needed to optimize the polymer-solvent system to enhance control of porosity, pore size, and coating thickness. This can lead to significant improvement in rate and cycle life performance in more advanced energy storage devices. 
    more » « less