skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum Chirikov criterion: Two particles in a box as a toy model for a quantum gas
We consider a toy model for emergence of chaos in a quantum many-body short-range-interacting system: two one-dimensional hard-core particles in a box, with a small mass defect as a perturbation over an integrable system, the latter represented by two equal mass particles.To that system, we apply a quantum generalization of Chirikov's criterion for the onset of chaos, i.e. the criterion of overlapping resonances.There, classical nonlinear resonances translate almost automatically to the quantum language. Quantum mechanics intervenes at a later stage: the resonances occupying less than one Hamiltonian eigenstate are excluded from the chaos criterion. Resonances appear as contiguous patches of low purity unperturbed eigenstates, separated by the groups of undestroyed states-the quantum analogues of the classical KAM tori.  more » « less
Award ID(s):
1912542
PAR ID:
10353904
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
SciPost Physics
Volume:
12
Issue:
1
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    It is well known that a quantum circuit on N qubits composed of Clifford gates with the addition of k non Clifford gates can be simulated on a classical computer by an algorithm scaling as poly ( N ) exp ⁡ ( k ) \cite{bravyi2016improved}. We show that, for a quantum circuit to simulate quantum chaotic behavior, it is both necessary and sufficient that k = Θ ( N ) . This result implies the impossibility of simulating quantum chaos on a classical computer. 
    more » « less
  2. Interacting quantum systems in the chaotic domain are at the core of various ongoing studies of many-body physics, ranging from the scrambling of quantum information to the onset of thermalization. We propose a minimum model for chaos that can be experimentally realized with cold atoms trapped in one-dimensional multi-well potentials. We explore the emergence of chaos as the number of particles is increased, starting with as few as two, and as the number of wells is increased, ranging from a double well to a multi-well Kronig-Penney-like system. In this way, we illuminate the narrow boundary between integrability and chaos in a highly tunable few-body system. We show that the competition between the particle interactions and the periodic structure of the confining potential reveals subtle indications of quantum chaos for 3 particles, while for 4 particles stronger signatures are seen. The analysis is performed for bosonic particles and could also be extended to distinguishable fermions. 
    more » « less
  3. Shor's factoring algorithm, believed to provide an exponential speedup over classical computation, relies on finding the period of an exactly periodic quantum modular multiplication operator. This exact periodicity is the hallmark of an integrable system, which is paradoxical from the viewpoint of quantum chaos, given that the classical limit of the modular multiplication operator is a highly chaotic system that occupies the “maximally random” Bernoulli level of the classical ergodic hierarchy. In this work, we approach this apparent paradox from a quantum dynamical systems viewpoint, and consider whether signatures of ergodicity and chaos may indeed be encoded in such an “integrable” quantization of a chaotic system. We show that Shor's modular multiplication operator, in specific cases, can be written as a superposition of quantized A -baker's maps exhibiting more typical signatures of quantum chaos and ergodicity. This work suggests that the integrability of Shor's modular multiplication operator may stem from the interference of other “chaotic” quantizations of the same family of maps, and paves the way for deeper studies on the interplay of integrability, ergodicity, and chaos in and via quantum algorithms. Published by the American Physical Society2024 
    more » « less
  4. Motivated by an exact mapping between equilibrium properties of a one-dimensional chain of quantum Ising spins in a transverse field (the transverse field Ising (TFI) model) and a two-dimensional classical array of particles in double-well potentials (the “ 4 model”) with weak inter-chain coupling, we explore connections between the driven variants of the two systems. We argue that coupling between the fundamen- tal topological solitary waves in the form of kinks between neighboring chains in the classical  4 system is the analog of the competing effect of the transverse field on spin flips in the quantum TFI model. As an example application, we mimic simplified measurement protocols in a closed quantum model system by studying the classical  phi 4 model subjected to periodic perturbations. This reveals memory/loss of mem- ory and coherence/decoherence regimes, whose quantum analogs are essential in annealing phenomena. In particular, we examine regimes where the topological excitations control the thermal equilibration following perturbations. This paves the way for further explorations of the analogy between lower-dimensional linear quantum and higher-dimensional classical nonlinear systems. 
    more » « less
  5. The ultimate regularity of quantum mechanics creates a tension with the assumption of classical chaos used in many of our pictures of chemical reaction dynamics. Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford have suggested a fundamental quantum bound for the rate of information scrambling, which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we use OTOCs to study model reactions based on a double-well reaction coordinate coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, as one enters the tunneling regime where the reaction rate does not strongly depend on temperature, the quantum Lyapunov exponent can approach the scrambling bound and the effective reaction rate obtained from a population correlation function can approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by expanding the state space available to the system. The coupling of a dissipative continuum bath to the reaction coordinate reduces the scrambling rate obtained from the early-time OTOC, thus making the scrambling bound harder to reach, in the same way that friction is known to lower the temperature at which thermally activated barrier crossing goes over to the low-temperature activationless tunneling regime. Thus, chemical reactions entering the tunneling regime can be information scramblers as powerful as the black holes to which the quantum Lyapunov exponent bound has usually been applied. 
    more » « less