skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Regret Minimization for Control of Non-stationary Linear Dynamical Systems
We consider the problem of controlling a Linear Quadratic Regulator (LQR) system over a finite horizon T with fixed and known cost matrices Q,R, but unknown and non-stationary dynamics A_t, B_t. The sequence of dynamics matrices can be arbitrary, but with a total variation, V_T, assumed to be o(T) and unknown to the controller. Under the assumption that a sequence of stabilizing, but potentially sub-optimal controllers is available for all t, we present an algorithm that achieves the optimal dynamic regret of O(V_T^2/5 T^3/5 ). With piecewise constant dynamics, our algorithm achieves the optimal regret of O(sqrtST ) where S is the number of switches. The crux of our algorithm is an adaptive non-stationarity detection strategy, which builds on an approach recently developed for contextual Multi-armed Bandit problems. We also argue that non-adaptive forgetting (e.g., restarting or using sliding window learning with a static window size) may not be regret optimal for the LQR problem, even when the window size is optimally tuned with the knowledge of $$V_T$$. The main technical challenge in the analysis of our algorithm is to prove that the ordinary least squares (OLS) estimator has a small bias when the parameter to be estimated is non-stationary. Our analysis also highlights that the key motif driving the regret is that the LQR problem is in spirit a bandit problem with linear feedback and locally quadratic cost. This motif is more universal than the LQR problem itself, and therefore we believe our results should find wider application.  more » « less
Award ID(s):
1934813
PAR ID:
10353924
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
1
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 72
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaudhuri, Kamalika and (Ed.)
    We study the problem of reinforcement learning (RL) with low (policy) switching cost {—} a problem well-motivated by real-life RL applications in which deployments of new policies are costly and the number of policy updates must be low. In this paper, we propose a new algorithm based on stage-wise exploration and adaptive policy elimination that achieves a regret of $$\widetilde{O}(\sqrt{H^4S^2AT})$$ while requiring a switching cost of $$O(HSA \log\log T)$$. This is an exponential improvement over the best-known switching cost $$O(H^2SA\log T)$$ among existing methods with $$\widetilde{O}(\mathrm{poly}(H,S,A)\sqrt{T})$$ regret. In the above, $S,A$ denotes the number of states and actions in an $$H$$-horizon episodic Markov Decision Process model with unknown transitions, and $$T$$ is the number of steps. As a byproduct of our new techniques, we also derive a reward-free exploration algorithm with a switching cost of $O(HSA)$. Furthermore, we prove a pair of information-theoretical lower bounds which say that (1) Any no-regret algorithm must have a switching cost of $$\Omega(HSA)$$; (2) Any $$\widetilde{O}(\sqrt{T})$$ regret algorithm must incur a switching cost of $$\Omega(HSA\log\log T)$$. Both our algorithms are thus optimal in their switching costs. 
    more » « less
  2. We introduce the E$^4$ algorithm for the batched linear bandit problem, incorporating an Explore-Estimate-Eliminate-Exploit framework. With a proper choice of exploration rate, we prove E$^4$ achieves the finite-time minimax optimal regret with only $$O(\log\log T)$$ batches, and the asymptotically optimal regret with only $$3$$ batches as $$T\rightarrow\infty$$, where $$T$$ is the time horizon. We further prove a lower bound on the batch complexity of linear contextual bandits showing that any asymptotically optimal algorithm must require at least $$3$$ batches in expectation as $$T\rightarrow\infty$$, which indicates E$^4$ achieves the asymptotic optimality in regret and batch complexity simultaneously. To the best of our knowledge, E$^4$ is the first algorithm for linear bandits that simultaneously achieves the minimax and asymptotic optimality in regret with the corresponding optimal batch complexities. In addition, we show that with another choice of exploration rate E$^4$ achieves an instance-dependent regret bound requiring at most $$O(\log T)$$ batches, and maintains the minimax optimality and asymptotic optimality. We conduct thorough experiments to evaluate our algorithm on randomly generated instances and the challenging \textit{End of Optimism} instances \citep{lattimore2017end} which were shown to be hard to learn for optimism based algorithms. Empirical results show that E$^4$ consistently outperforms baseline algorithms with respect to regret minimization, batch complexity, and computational efficiency. 
    more » « less
  3. We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve O(∆^1/4 T^3/4) regret when the degree of nonstationarity, as measured by total variation ∆, is known, and O(∆^1/5 T^4/5) regret when ∆ is unknown, where T is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria. 
    more » « less
  4. In this paper, we propose and study opportunistic contextual bandits - a special case of contextual bandits where the exploration cost varies under different environmental conditions, such as network load or return variation in recommendations. When the exploration cost is low, so is the actual regret of pulling a sub-optimal arm (e.g., trying a suboptimal recommendation). Therefore, intuitively, we could explore more when the exploration cost is relatively low and exploit more when the exploration cost is relatively high. Inspired by this intuition, for opportunistic contextual bandits with Linear payoffs, we propose an Adaptive Upper-Confidence-Bound algorithm (AdaLinUCB) to adaptively balance the exploration-exploitation trade-off for opportunistic learning. We prove that AdaLinUCB achieves O((log T)^2) problem-dependent regret upper bound, which has a smaller coefficient than that of the traditional LinUCB algorithm. Moreover, based on both synthetic and real-world dataset, we show that AdaLinUCB significantly outperforms other contextual bandit algorithms, under large exploration cost fluctuations. 
    more » « less
  5. null (Ed.)
    We consider the framework of non-stationary stochastic optimization (Besbes et al., 2015) with squared error losses and noisy gradient feedback where the dynamic regret of an online learner against a time varying comparator sequence is studied. Motivated from the theory of non-parametric regression, we introduce a new variational constraint that enforces the comparator sequence to belong to a discrete k^{th} order Total Variation ball of radius C_n. This variational constraint models comparators that have piece-wise polynomial structure which has many relevant practical applications (Tibshirani, 2014). By establishing connections to the theory of wavelet based non-parametric regression, we design a polynomial time algorithm that achieves the nearly optimal dynamic regret of ~O(n^{1/(2k+3)} C_n^{2/(2k+3)}). The proposed policy is adaptive to the unknown radius C_n. Further, we show that the same policy is minimax optimal for several other non-parametric families of interest. 
    more » « less