The Pareto-optimal frontier for a bi-objective search problem instance consists of all solutions that are not worse than any other solution in both objectives. The size of the Pareto-optimal frontier can be exponential in the size of the input graph, and hence finding it can be hard. Some existing works leverage a user-specified approximation factor ε to compute an approximate Pareto-optimal frontier that can be significantly smaller than the Pareto-optimal frontier. In this paper, we propose an anytime approximate bi-objective search algorithm, called Anytime Bi-Objective A*-ε (A-BOA*ε). A-BOA*ε is useful when deliberation time is limited. It first finds an approximate Pareto-optimal frontier quickly, iteratively improves it while time allows, and eventually finds the Pareto-optimal frontier. It efficiently reuses the search effort from previous iterations and makes use of a novel pruning technique. Our experimental results show that A-BOA*ε substantially outperforms baseline algorithms that do not reuse previous search effort, both in terms of runtime and number of node expansions. In fact, the most advanced variant of A-BOA*ε even slightly outperforms BOA*, a state-of-the-art bi-objective search algorithm, for finding the Pareto-optimal frontier. Moreover, given only a limited amount of deliberation time, A-BOA*ε finds solutions that collectively approximate the Pareto-optimal frontier much better than the solutions found by BOA*.
more »
« less
Enhanced multi-objective A* using balanced binary search trees
This work addresses a Multi-Objective Shortest Path Problem (MO-SPP) on a graph where the goal is to find a set of Pareto-optimal solutions from a start node to a destination in the graph. A family of approaches based on MOA* have been developed to solve MO-SPP in the literature. Typically, these approaches maintain a “frontier” set at each node during the search process to keep track of the non-dominated, partial paths to reach that node. This search process becomes computationally expensive when the number of objectives increases as the number of Pareto-optimal solutions becomes large. In this work, we introduce a new method to efficiently maintain these frontiers for multiple objectives by incrementally constructing balanced binary search trees within the MOA* search framework. We first show that our approach correctly finds the Pareto-optimal front, and then provide extensive simulation results for problems with three, four and five objectives to show that our method runs faster than existing techniques by up to an order of magnitude.
more »
« less
- Award ID(s):
- 2120529
- PAR ID:
- 10354018
- Editor(s):
- NA
- Date Published:
- Journal Name:
- Proceedings of the International Symposium on Combinatorial Search
- Volume:
- 15
- Issue:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We initiate the study of fair distribution of delivery tasks among a set of agents wherein delivery jobs are placed along the vertices of a graph. Our goal is to fairly distribute delivery costs (modeled as a submodular function) among a fixed set of agents while satisfying some desirable notions of economic efficiency. We adopt well-established fairness concepts—such as envy-freeness up to one item (EF1) and minimax share (MMS)—to our setting and show that fairness is often incompatible with the efficiency notion of social optimality. Yet, we characterize instances that admit fair and socially optimal solutions by exploiting graph structures. We further show that achieving fairness along with Pareto optimality is computationally intractable. Nonetheless, we design an XP algorithm (parameterized by the number of agents) for finding MMS and Pareto optimal solutions on every tree instance, and show that the same algorithm can be modified to find efficient solutions along with EF1, when such solutions exist. We complement these results by theoretically and experimentally analyzing the price of fairness.more » « less
-
Deep neural networks are lucrative targets of adversarial attacks and approximate deep neural networks (AxDNNs) are no exception. Searching manually for adversarially robust AxDNN architectures incurs outrageous time and human effort. In this paper, we propose XAI-NAS, an explainable neural architecture search (NAS) method that leverages explainable artificial intelligence (XAI) to efficiently co-optimize the adversarial robustness and hardware efficiency of AxDNN architectures on systolic-array hardware accelerators. During the NAS process, AxDNN architectures are evolved layer-wise with heterogeneous approximate multipliers to deliver the best trade-offs between adversarial robustness, energy consumption, latency, and memory footprint. The most suitable approximate multipliers are automatically selected from an open-source Evoapprox8b library. Our extensive evaluations provide a set of Pareto optimal hardware efficient and adversarially robust solutions. For example, a Pareto-optimal DNN AxDNN for the MNIST and CIFAR-10 datasets exhibits up to 1.5× higher adversarial robustness, 2.1× less energy consumption, 4.39× reduced latency, and 2.37× low memory footprint when compared to the state-of-the-art NAS approaches.more » « less
-
In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is 'less than' the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PPA*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PPA* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any number of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search.more » « less
-
Human expectations arise from their understanding of others and the world. In the context of human-AI interaction, this understanding may not align with reality, leading to the AI agent failing to meet expectations and compromising team performance. Explicable planning, introduced as a method to bridge this gap, aims to reconcile human expectations with the agent's optimal behavior, facilitating interpretable decision-making. However, an unresolved critical issue is ensuring safety in explicable planning, as it could result in explicable behaviors that are unsafe. To address this, we propose Safe Explicable Planning (SEP), which extends the prior work to support the specification of a safety bound. The goal of SEP is to find behaviors that align with human expectations while adhering to the specified safety criterion. Our approach generalizes the consideration of multiple objectives stemming from multiple models rather than a single model, yielding a Pareto set of safe explicable policies. We present both an exact method, guaranteeing finding the Pareto set, and a more efficient greedy method that finds one of the policies in the Pareto set. Additionally, we offer approximate solutions based on state aggregation to improve scalability. We provide formal proofs that validate the desired theoretical properties of these methods. Evaluation through simulations and physical robot experiments confirms the effectiveness of our approach for safe explicable planning.more » « less
An official website of the United States government

