skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fair Distribution of Delivery Orders
We initiate the study of fair distribution of delivery tasks among a set of agents wherein delivery jobs are placed along the vertices of a graph. Our goal is to fairly distribute delivery costs (modeled as a submodular function) among a fixed set of agents while satisfying some desirable notions of economic efficiency. We adopt well-established fairness concepts—such as envy-freeness up to one item (EF1) and minimax share (MMS)—to our setting and show that fairness is often incompatible with the efficiency notion of social optimality. Yet, we characterize instances that admit fair and socially optimal solutions by exploiting graph structures. We further show that achieving fairness along with Pareto optimality is computationally intractable. Nonetheless, we design an XP algorithm (parameterized by the number of agents) for finding MMS and Pareto optimal solutions on every tree instance, and show that the same algorithm can be modified to find efficient solutions along with EF1, when such solutions exist. We complement these results by theoretically and experimentally analyzing the price of fairness.  more » « less
Award ID(s):
2144413 2107173 1928930
PAR ID:
10533716
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Joint Conferences on Artificial Intelligence Organization
Date Published:
ISBN:
978-1-956792-04-1
Page Range / eLocation ID:
2825 to 2833
Format(s):
Medium: X
Location:
Jeju, South Korea
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the problem of fair and efficient allocation of a set of indivisible goods to agents with additive valuations using the popular fairness notions of envy-freeness up to one good (EF1) and equitability up to one good (EQ1) in conjunction with Pareto-optimality (PO). There exists a pseudo-polynomial time algorithm to compute an EF1+PO allocation and a non-constructive proof of the existence of allocations that are both EF1 and fractionally Pareto-optimal (fPO), which is a stronger notion than PO. We present a pseudopolynomial time algorithm to compute an EF1+fPO allocation, thereby improving the earlier results. Our techniques also enable us to show that an EQ1+fPO allocation always exists when the values are positive and that it can be computed in pseudo-polynomial time.We also consider the class of k-ary instances where k is a constant, i.e., each agent has at most k different values for the goods. For such instances, we show that an EF1+fPO allocation can be computed in strongly polynomial time. When all values are positive, we show that an EQ1+fPO allocation for such instances can be computed in strongly polynomial time. Next, we consider instances where the number of agents is constant and show that an EF1+PO (likewise, an EQ1+PO) allocation can be computed in polynomial time. These results significantly extend the polynomial-time computability beyond the known cases of binary or identical valuations.We also design a polynomial-time algorithm that computes a Nash welfare maximizing allocation when there are constantly many agents with constant many different values for the goods. Finally, on the complexity side, we show that the problem of computing an EF1+fPO allocation lies in the complexity class PLS. 
    more » « less
  2. We consider the problem of fairly allocating a set of indivisible goods among n agents. Various fairness notions have been proposed within the rapidly growing field of fair division, but the Nash social welfare (NSW) serves as a focal point. In part, this follows from the ‘unreasonable’ fairness guarantees provided, in the sense that a max NSW allocation meets multiple other fairness metrics simultaneously, all while satisfying a standard economic concept of efficiency, Pareto optimality. However, existing approximation algorithms fail to satisfy all of the remarkable fairness guarantees offered by a max NSW allocation, instead targeting only the specific NSW objective. We address this issue by presenting a 2 max NSW, Prop-1, 1/(2n) MMS, and Pareto optimal allocation in strongly polynomial time. Our techniques are based on a market interpretation of a fractional max NSW allocation. We present novel definitions of fairness concepts in terms of market prices, and design a new scheme to round a market equilibrium into an integral allocation in a way that provides most of the fairness properties of an integral max NSW allocation. 
    more » « less
  3. We consider the problem of fairly allocating a set of indivisible goods among n agents. Various fairness notions have been proposed within the rapidly growing field of fair division, but the Nash social welfare (NSW) serves as a focal point. In part, this follows from the 'unreasonable' fairness guarantees provided, in the sense that a max NSW allocation meets multiple other fairness metrics simultaneously, all while satisfying a standard economic concept of efficiency, Pareto optimality. However, existing approximation algorithms fail to satisfy all of the remarkable fairness guarantees offered by a max NSW allocation, instead targeting only the specific NSW objective. We address this issue by presenting a 2 max NSW, Prop-1, 1/(2n) MMS, and Pareto optimal allocation in strongly polynomial time. Our techniques are based on a market interpretation of a fractional max NSW allocation. We present novel definitions of fairness concepts in terms of market prices, and design a new scheme to round a market equilibrium into an integral allocation that provides most of the fairness properties of an integral max NSW allocation.  
    more » « less
  4. We study the problem of fair and efficient allocation of a set of indivisible chores to agents with additive cost functions. We consider the popular fairness notion of envy-freeness up to one good (EF1) with the efficiency notion of Pareto-optimality (PO). While it is known that EF1+PO allocations exists and can be computed in pseudo-polynomial time in the case of goods, the same problem is open for chores. Our first result is a strongly polynomial-time algorithm for computing an EF1+PO allocation for bivalued instances, where agents have (at most) two disutility values for the chores. To the best of our knowledge, this is the first non-trivial class of chores to admit an EF1+PO allocation and an efficient algorithm for its computation. We also study the problem of computing an envy-free (EF) and PO allocation for the case of divisible chores. While the existence of EF+PO allocation is known via competitive equilibrium with equal incomes, its efficient computation is open. Our second result shows that for bivalued instances, an EF+PO allocation can be computed in strongly polynomial-time. 
    more » « less
  5. We investigate the existence of fair and efficient allocations of indivisible chores to asymmetric agents who have unequal entitlements or weights. We consider the fairness notion of weighted envy-freeness up to one chore (wEF1) and the efficiency notion of Pareto-optimality (PO). The existence of EF1 and PO allocations of chores to symmetric agents is a major open problem in discrete fair division, and positive results are known only for certain structured instances. In this paper, we study this problem for a more general setting of asymmetric agents and show that an allocation that is wEF1 and PO exists and can be computed in polynomial time for instances with:- Three types of agents where agents with the same type have identical preferences but can have different weights. - Two types of choresFor symmetric agents, our results establish that EF1 and PO allocations exist for three types of agents and also generalize known results for three agents, two types of agents, and two types of chores. Our algorithms use a weighted picking sequence algorithm as a subroutine; we expect this idea and our analysis to be of independent interest. 
    more » « less