One aspect of system security is evaluating a system’s vulnerability to Trojan attack. A hardware Trojan attack can have potentially devastating effects, especially given the increased reliance on integrated circuits within critical systems. A significant amount of research concerns attacks on digital systems, but attacks on AMS and RF systems have recently been of interest as well. A class of Trojans has been proposed that uses undesired alternate modes of operation in nonlinear systems as the Trojan payload. These Trojans are of particular interest because they do not cause deviations from the ideal system performance and cannot be detected until the Trojan is triggered. This work addresses this class of Trojans by listing different payloads, trigger mechanisms, and examples of system architectures vulnerable to attack.
more »
« less
Design of AI Trojans for Evading Machine Learning-based Detection of Hardware Trojans
The globalized semiconductor supply chain significantly increases the risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Traditional simulation-based validation is unsuitable for detection of carefully-crafted hardware Trojans with extremely rare trigger conditions. While machine learning (ML) based Trojan detection approaches are promising due to their scalability as well as detection accuracy, ML-based methods themselves are vulnerable from Trojan attacks. In this paper, we propose a robust backdoor attack on ML-based Trojan detection algorithms to demonstrate this serious vulnerability. The proposed framework is able to design an AI Trojan and implant it inside the ML model that can be triggered by specific inputs. Experimental results demonstrate that the proposed AI Trojans can bypass state-of-the-art defense algorithms. Moreover, our approach provides a fast and cost-effective solution in achieving 100% attack success rate that significantly outperforms state-of-the art approaches based on adversarial attacks.
more »
« less
- Award ID(s):
- 1908131
- PAR ID:
- 10354090
- Date Published:
- Journal Name:
- Design, Automation & Test in Europe Conference & Exhibition (DATE)
- Page Range / eLocation ID:
- 682 to 687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The implementation of cryptographic primitives in integrated circuits (ICs) continues to increase over the years due to the recent advancement of semiconductor manufacturing and reduction of cost per transistors. The hardware implementation makes cryptographic operations faster and more energy-efficient. However, various hardware attacks have been proposed aiming to extract the secret key in order to undermine the security of these primitives. In this paper, we focus on the widely used advanced encryption standard (AES) block cipher and demonstrate its vulnerability against tampering attack. Our proposed attack relies on implanting a hardware Trojan in the netlist by an untrusted foundry, which can design and implement such a Trojan as it has access to the design layout and mask information. The hardware Trojan's activation modifies a particular round's input data by preventing the effect of all previous rounds' key-dependent computation. We propose to use a sequential hardware Trojan to deliver the payload at the input of an internal round for achieving this modification of data. All the internal subkeys, and finally, the secret key can be computed from the observed ciphertext once the Trojan is activated. We implement our proposed tampering attack with a sequential hardware Trojan inserted into a 128-bit AES design from OpenCores benchmark suite and report the area overhead to demonstrate the feasibility of the proposed tampering attack.more » « less
-
null (Ed.)Due to the globalization of semiconductor manufacturing and test processes, the system-on-a-chip (SoC) designers no longer design the complete SoC and manufacture chips on their own. This outsourcing of the design and manufacturing of Integrated Circuits (ICs) has resulted in several threats, such as overproduction of ICs, sale of out-of-specification/rejected ICs, and piracy of Intellectual Properties (IPs). Logic locking has emerged as a promising defense strategy against these threats. However, various attacks about the extraction of secret keys have undermined the security of logic locking techniques. Over the years, researchers have proposed different techniques to prevent existing attacks. In this article, we propose a novel attack that can break any logic locking techniques that rely on the stored secret key. This proposed TAAL attack is based on implanting a hardware Trojan in the netlist, which leaks the secret key to an adversary once activated. As an untrusted foundry can extract the netlist of a design from the layout/mask information, it is feasible to implement such a hardware Trojan. All three proposed types of TAAL attacks can be used for extracting secret keys. We have introduced the models for both the combinational and sequential hardware Trojans that evade manufacturing tests. An adversary only needs to choose one hardware Trojan out of a large set of all possible Trojans to launch the TAAL attack.more » « less
-
Due to the globalization of Integrated Circuit supply chain, hardware Trojans and the attacks that can trigger them have become an important security issue. One type of hardware Trojans leverages the “don’t care transitions” in Finite-state Machines (FSMs) of hardware designs. In this article, we present a symbolic approach to detecting don’t care transitions and the hidden Trojans. Our detection approach works at both register-transfer level (RTL) and gate level, does not require a golden design, and works in three stages. In the first stage, it explores the reachable states. In the second stage, it performs an approximate analysis to find the don’t care transitions and any discrepancies in the register values or output lines due to don’t care transitions. The second stage can be used for both predicting don’t care triggered Trojans and for guiding don’t care aware reachability analysis. In the third stage, it performs a state-space exploration from reachable states that have incoming don’t care transitions to explore the Trojan payload and to find behavioral discrepancies with respect to what has been observed in the first stage. We also present a pruning technique based on the reachability of FSM states. We present a methodology that leverages both RTL and gate-level for soundness and efficiency. Specifically, we show that don’t care transitions and Trojans that leverage them must be detected at the gate-level, i.e., after synthesis has been performed, for soundness. However, under specific conditions, Trojan payload exploration can be performed more efficiently at RTL. Additionally, the modular design of our approach also provides a fast Trojan prediction method even at the gate level when the reachable states of the FSM is known a priori . Evaluation of our approach on a set of benchmarks from OpenCores and TrustHub and using gate-level representation generated by two synthesis tools, YOSYS and Synopsis Design Compiler (SDC), shows that our approach is both efficient (up to 10× speedup w.r.t. no pruning) and precise (0% false positives both at RTL and gate-level netlist) in detecting don’t care transitions and the Trojans that leverage them. Additionally, the total analysis time can achieve up to 1.62× (using YOSYS) and 1.92× (using SDC) speedup when synthesis preserves the FSM structure, the foundry is trusted, and the Trojan detection is performed at RTL.more » « less
-
null (Ed.)Reliability and trustworthiness are dominant factors in designing System-on-Chips (SoCs) for a variety of applications. Malicious implants, such as hardware Trojans, can lead to undesired information leakage or system malfunction. To ensure trustworthy computing, it is critical to develop efficient Trojan detection techniques. While existing delay-based side-channel analysis is promising, it is not effective due to two fundamental limitations: (i) The difference in path delay between the golden design and Trojan inserted design is negligible compared with environmental noise and process variations. (ii) Existing approaches rely on manually crafted rules for test generation, and require a large number of simulations, making it impractical for industrial designs. In this paper, we propose a novel test generation method using reinforcement learning for delay-based Trojan detection. This paper makes three important contributions. 1) Unlike existing methods that rely on the delay difference of a few gates, our proposed approach utilizes critical path analysis to generate test vectors that can maximize the side-channel sensitivity. 2) To the best of our knowledge, our approach is the first attempt in applying reinforcement learning for efficient test generation to detect Trojans using delay-based analysis. 3) Our experimental results demonstrate that our method can significantly improve both side-channel sensitivity (59% on average) and test generation time (17x on average) compared to state-of-the-art test generation techniques.more » « less
An official website of the United States government

