skip to main content


Title: A Symbolic Approach to Detecting Hardware Trojans Triggered by Don’t Care Transitions
Due to the globalization of Integrated Circuit supply chain, hardware Trojans and the attacks that can trigger them have become an important security issue. One type of hardware Trojans leverages the “don’t care transitions” in Finite-state Machines (FSMs) of hardware designs. In this article, we present a symbolic approach to detecting don’t care transitions and the hidden Trojans. Our detection approach works at both register-transfer level (RTL) and gate level, does not require a golden design, and works in three stages. In the first stage, it explores the reachable states. In the second stage, it performs an approximate analysis to find the don’t care transitions and any discrepancies in the register values or output lines due to don’t care transitions. The second stage can be used for both predicting don’t care triggered Trojans and for guiding don’t care aware reachability analysis. In the third stage, it performs a state-space exploration from reachable states that have incoming don’t care transitions to explore the Trojan payload and to find behavioral discrepancies with respect to what has been observed in the first stage. We also present a pruning technique based on the reachability of FSM states. We present a methodology that leverages both RTL and gate-level for soundness and efficiency. Specifically, we show that don’t care transitions and Trojans that leverage them must be detected at the gate-level, i.e., after synthesis has been performed, for soundness. However, under specific conditions, Trojan payload exploration can be performed more efficiently at RTL. Additionally, the modular design of our approach also provides a fast Trojan prediction method even at the gate level when the reachable states of the FSM is known a priori . Evaluation of our approach on a set of benchmarks from OpenCores and TrustHub and using gate-level representation generated by two synthesis tools, YOSYS and Synopsis Design Compiler (SDC), shows that our approach is both efficient (up to 10× speedup w.r.t. no pruning) and precise (0% false positives both at RTL and gate-level netlist) in detecting don’t care transitions and the Trojans that leverage them. Additionally, the total analysis time can achieve up to 1.62× (using YOSYS) and 1.92× (using SDC) speedup when synthesis preserves the FSM structure, the foundry is trusted, and the Trojan detection is performed at RTL.  more » « less
Award ID(s):
2019283
NSF-PAR ID:
10454170
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM Transactions on Design Automation of Electronic Systems
Volume:
28
Issue:
2
ISSN:
1084-4309
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to the increasing complexity of hardware designs, third-party hardware Intellectual Property (IP) cores are often incorporated to alleviate the burden on hardware designers. However, the prevalent use of third-party IPs has raised security concerns such as hardware Trojans. These Trojans inserted in the soft IPs are very difficult to detect through functional testing and no single detection methodology has been able to completely address this issue. Based on a Register- Transfer Level (RTL) soft IP analysis method named Structural Checking, this paper presents a hardware Trojan detection methodology and tool by detailing the implementation of a Golden Reference Library for matching an unknown IP to a functionally similar Golden Reference. The matching result is quantified in percentages so that two different IPs with similar functions have a higher percentage match. A match of the unknown IP to a whitelist IP advances it to be identified with a known functionality, while a match to a blacklist IP causes it to be detected as Trojan-infested. 
    more » « less
  2. This paper proposes AdaTest, a novel adaptive test pattern generation framework for efficient and reliable Hardware Trojan (HT) detection. HT is a backdoor attack that tampers with the design of victim integrated circuits (ICs). AdaTest improves the existing HT detection techniques in terms of scalability and accuracy of detecting smaller Trojans in the presence of noise and variations. To achieve high trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of test inputs. Particularly, we progressively generate test vectors with high ‘reward’ values in an iterative manner. In each iteration, the test set is evaluated and adaptively expanded as needed. Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more information for HT detection, thus reducing the number of samples while improving the samples’ quality for faster exploration. We develop AdaTest with a Software/Hardware co-design principle and provide an optimized on-chip architecture solution. AdaTest’s architecture minimizes the hardware overhead in two ways: (i) Deploying circuit emulation on programmable hardware to accelerate reward evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically constructing auxiliary circuit for test input generation, reward evaluation, and adaptive sampling. We evaluate AdaTest’s performance on various HT benchmarks and compare it with two prior works that use logic testing for HT detection. Experimental results show that AdaTest engenders up to two orders of test generation speedup and two orders of test set size reduction compared to the prior works while achieving the same level or higher Trojan detection rate. 
    more » « less
  3. Context-free language reachability (CFL-reachability) is a fundamental framework for program analysis. A large variety of static analyses can be formulated as CFL-reachability problems, which determines whether specific source-sink pairs in an edge-labeled graph are connected by a reachable path, i.e., a path whose edge labels form a string accepted by the given CFL. Computing CFL-reachability is expensive. The fastest algorithm exhibits a slightly subcubic time complexity with respect to the input graph size. Improving the scalability of CFL-reachability is of practical interest, but reducing the time complexity is inherently difficult. In this paper, we focus on improving the scalability of CFL-reachability from a more practical perspective---reducing the input graph size. Our idea arises from the existence of trivial edges, i.e., edges that do not affect any reachable path in CFL-reachability. We observe that two nodes joined by trivial edges can be folded---by merging the two nodes with all the edges joining them removed---without affecting the CFL-reachability result. By studying the characteristic of the recursive state machines (RSMs), an alternative form of CFLs, we propose an approach to identify foldable node pairs without the need to verify the underlying reachable paths (which is equivalent to solving the CFL-reachability problem). In particular, given a CFL-reachability problem instance with an input graph G and an RSM, based on the correspondence between paths in G and state transitions in RSM, we propose a graph folding principle, which can determine whether two adjacent nodes are foldable by examining only their incoming and outgoing edges. On top of the graph folding principle, we propose an efficient graph folding algorithm GF. The time complexity of GF is linear with respect to the number of nodes in the input graph. Our evaluations on two clients (alias analysis and value-flow analysis) show that GF significantly accelerates RSM/CFL-reachability by reducing the input graph size. On average, for value-flow analysis, GF reduces 60.96% of nodes and 42.67% of edges of the input graphs, obtaining a speedup of 4.65× and a memory usage reduction of 57.35%. For alias analysis, GF reduces 38.93% of nodes and 35.61% of edges of the input graphs, obtaining a speedup of 3.21× and a memory usage reduction of 65.19%. 
    more » « less
  4. One aspect of system security is evaluating a system’s vulnerability to Trojan attack. A hardware Trojan attack can have potentially devastating effects, especially given the increased reliance on integrated circuits within critical systems. A significant amount of research concerns attacks on digital systems, but attacks on AMS and RF systems have recently been of interest as well. A class of Trojans has been proposed that uses undesired alternate modes of operation in nonlinear systems as the Trojan payload. These Trojans are of particular interest because they do not cause deviations from the ideal system performance and cannot be detected until the Trojan is triggered. This work addresses this class of Trojans by listing different payloads, trigger mechanisms, and examples of system architectures vulnerable to attack. 
    more » « less
  5. The ever-increasing number of layers, millions of parameters, and large data volume make deep learning workloads resource-intensive and power-hungry. In this paper, we develop a convolutional neural network (CNN) acceleration framework, named MLCNN, which explores algorithm-hardware co-design to achieve cross-layer cooperative optimization and acceleration. MLCNN dramatically reduces computation and on-off chip communication, improving CNN’s performance. To achieve this, MLCNN reorders the position of nonlinear activation layers and pooling layers, which we prove results in a negligible accuracy loss; then the convolutional layer and pooling layer are cooptimized by means of redundant multiplication elimination, local addition reuse, and global addition reuse. To the best of our knowledge, MLCNN is the first of its kind that incorporates cooperative optimization across convolutional, activation, and pooling layers. We further customize the MLCNN accelerator to take full advantage of cross-layer CNN optimization to reduce both computation and on-off chip communication. Our analysis shows that MLCNN can significantly reduce (up to 98%) multiplications and additions. We have implemented a prototype of MLCNN and evaluated its performance on several widely used CNN models using both an accelerator-level cycle and energy model and RTL implementation. Experimental results show that MLCNN achieves 3.2× speedup and 2.9× energy efficiency compared with dense CNNs. MLCNN’s optimization methods are orthogonal to other CNN acceleration techniques, such as quantization and pruning. Combined with quantization, our quantized MLCNN gains a 12.8× speedup and 11.3× energy efficiency compared with DCNN. 
    more » « less