Background:Technology has the potential to prevent patient falls in healthcare settings and to reduce work-related injuries among healthcare providers. However, the usefulness and acceptability of each technology requires careful evaluation. Framed by the Technology Acceptance Model (TAM) and using the Adaptive Robotic Nursing Assistant (ARNA) to assist with patient ambulation, the present study examined the perceived usefulness of robots in patients’ fall prevention with implications for preventing associated work-related injuries among healthcare providers. Methods:Employing an experimental design, subjects were undergraduate nursing students ( N = 38) and one external subject (not a nursing student) who played the role of the patient. Procedures included subjects ambulating a simulated patient in three ways: (a) following the practice of a nurse assisting a patient to walk with the patient wearing a gait belt; (b) an ARNA-assisted process with the gait belt attached to ARNA; (c) an ARNA-assisted process with a subject walking a patient wearing a harness that is attached to ARNA. Block randomization was used with the following experimental scenarios: Gait Belt (human with a gait belt), “ARNA + Gait Belt” (a robot with a gait belt), and “ARNA + Harness” (a robot with a harness). Descriptive statistics and a multiple regression model were used to analyze the data and compare the outcome described as the Perceived Usefulness (PU) of a robot for patient walking versus a human “nurse assistant” without a robot. The independent variables included the experimental conditions of “Gait Belt,” “ARNA + Gait Belt,” and “ARNA + Harness,” the subject’s age, race, and previous videogame playing experience. Findings:Results indicated that PU was significantly higher in the Gait Belt + ARNA and Harness + ARNA conditions than in the Gait Belt condition ( p-value <.01 for both variables). In examining potential influencing factors, the effects of race (White, African American, and Asian), age, and previous video-playing experience were not statistically significant ( p-value >.05). Discussion:Results demonstrated that using robot technology to assist in walking patients was perceived by subjects as more useful in preventing falls than the gait belt. Patient fall prevention also has implications for preventing associated work-related injuries among healthcare providers. Implications:Understanding the effects of a subject’s perceptions can guide further development of assistive robots in patient care. Robotic engineers and interdisciplinary teams can design robots to accommodate worker characteristics and individual differences to improve worker safety and reduce work injuries.
more »
« less
The Impact of an In-Home Co-Located Robotic Coach in Helping People Make Fewer Exercise Mistakes
Regular exercise provides many mental and physical health benefits. However, when exercises are done incorrectly, it can lead to injuries. Because the COVID-19 pandemic made it challenging to exercise in communal spaces, the growth of virtual fitness programs was accelerated, putting people at risk of sustaining exercise-related injuries as they received little to no feedback on their exercising techniques. Colocated robots could be one potential enhancement to virtual training programs as they can cause higher learning gains, more compliance, and more enjoyment than non-co-located robots. In this study, we compare the effects of a physically present robot by having a person exercise either with a robot (robot condition) or a video of a robot displayed on a tablet (tablet condition). Participants (N=25) had an exercise system in their homes for two weeks. Participants who exercised with the colocated robot made fewer mistakes than those who exercised with the video-displayed robot. Furthermore, participants in the robot condition reported a higher fitness increase and more motivation to exercise than participants in the tablet condition.
more »
« less
- PAR ID:
- 10354174
- Date Published:
- Journal Name:
- 31st IEEE International Conference on Robot & Human Interactive Communication
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Introduction This dataset was gathered during the Vid2Real online video-based study, which investigates humans’ perception of robots' intelligence in the context of an incidental Human-Robot encounter. The dataset contains participants' questionnaire responses to four video study conditions, namely Baseline, Verbal, Body language, and Body language + Verbal. The videos depict a scenario where a pedestrian incidentally encounters a quadruped robot trying to enter a building. The robot uses verbal commands or body language to try to ask for help from the pedestrian in different study conditions. The differences in the conditions were manipulated using the robot’s verbal and expressive movement functionalities. Dataset Purpose The dataset includes the responses of human subjects about the robots' social intelligence used to validate the hypothesis that robot social intelligence is positively correlated with human compliance in an incidental human-robot encounter context. The video based dataset was also developed to obtain empirical evidence that can be used to design future real-world HRI studies. Dataset Contents Four videos, each corresponding to a study condition. Four sets of Perceived Social Intelligence Scale data. Each set corresponds to one study condition Four sets of compliance likelihood questions, each set include one Likert question and one free-form question One set of Godspeed questionnaire data. One set of Anthropomorphism questionnaire data. A csv file containing the participants demographic data, Likert scale data, and text responses. A data dictionary explaining the meaning of each of the fields in the csv file. Study Conditions There are 4 videos (i.e. study conditions), the video scenarios are as follows. Baseline: The robot walks up to the entrance and waits for the pedestrian to open the door without any additional behaviors. This is also the "control" condition. Verbal: The robot walks up to the entrance, and says ”can you please open the door for me” to the pedestrian while facing the same direction, then waits for the pedestrian to open the door. Body Language: The robot walks up to the entrance, turns its head to look at the pedestrian, then turns its head to face the door, and waits for the pedestrian to open the door. Body Language + Verbal: The robot walks up to the entrance, turns its head to look at the pedestrian, and says ”Can you open the door for me” to the pedestrian, then waits for the pedestrian to open the door. Image showing the Verbal condition. Image showing the Body Language condition. A within-subject design was adopted, and all participants experienced all conditions. The order of the videos, as well as the PSI scales, were randomized. After receiving consent from the participants, they were presented with one video, followed by the PSI questions and the two exploratory questions (compliance likelihood) described above. This set was repeated 4 times, after which the participants would answer their general perceptions of the robot with Godspeed and AMPH questionnaires. Each video was around 20 seconds and the total study time was around 10 minutes. Video as a Study Method A video-based study in human-robot interaction research is a common method for data collection. Videos can easily be distributed via online participant recruiting platforms, and can reach a larger sample than in-person/lab-based studies. Therefore, it is a fast and easy method for data collection for research aiming to obtain empirical evidence. Video Filming The videos were filmed with a first-person point-of-view in order to maximize the alignment of video and real-world settings. The device used for the recording was an iPhone 12 pro, and the videos were shot in 4k 60 fps. For better accessibility, the videos have been converted to lower resolutions. Instruments The questionnaires used in the study include the Perceived Social Intelligence Scale (PSI), Godspeed Questionnaire, and Anthropomorphism Questionnaire (AMPH). In addition to these questionnaires, a 5-point Likert question and a free-text response measuring human compliance were added for the purpose of the video-based study. Participant demographic data was also collected. Questionnaire items are attached as part of this dataset. Human Subjects For the purpose of this project, the participants are recruited through Prolific. Therefore, the participants are users of Prolific. Additionally, they are restricted to people who are currently living in the United States, fluent in English, and have no hearing or visual impairments. No other restrictions were imposed. Among the 385 participants, 194 participants identified as female, and 191 as male, the age ranged from 19 to 75 (M = 38.53, SD = 12.86). Human subjects remained anonymous. Participants were compensated with $4 upon submission approval. This study was reviewed and approved by UT Austin Internal Review Board. Robot The dataset contains data about humans’ perceived social intelligence of a Boston Dynamics’ quadruped robot Spot (Explorer model). The robot was selected because quadruped robots are gradually being adopted to provide services such as delivery, surveillance, and rescue. However, there are still issues or obstacles that robots cannot easily overcome by themselves in which they will have to ask for help from nearby humans. Therefore, it is important to understand how humans react to a quadruped robot that they incidentally encounter. For the purposes of this video-study, the robot operation was semi-autonomous, with the navigation being manually teleoperated by an operator and a few standalone autonomous modules to supplement it. Data Collection The data was collected through Qualtrics, a survey development platform. After the completion of data collection, the data was downloaded as a csv file. Data Quality Control Qualtrics automatically detects bots so any response that is flagged as bots are discarded. All incomplete and duplicate responses were discarded. Data Usage This dataset can be used to conduct a meta-analysis on robots' perceived intelligence. Please note that data is coupled with this study design. Users interested in data reuse will have to assess that this dataset is in line with their study design. Acknowledgement This study was funded through the NSF Award # 2219236GCR: Community-Embedded Robotics: Understanding Sociotechnical Interactions with Long-term Autonomous Deployments.more » « less
-
Mistakes, failures, and transgressions committed by a robot are inevitable as robots become more involved in our society. When a wrong behavior occurs, it is important to understand what factors might affect how the robot is perceived by people. In this paper, we investigated how the type of transgressor (human or robot) and type of backstory depicting the transgressor's mental capabilities (default, physio-emotional, socio-emotional, or cognitive) shaped participants' perceptions of the transgressor's morality. We performed an online, between-subjects study in which participants (N=720) were first introduced to the transgressor and its backstory, and then viewed a video of a real-life robot or human pushing down a human. Although participants attributed similarly high intent to both the robot and the human, the human was generally perceived to have higher morality than the robot. However, the backstory that was told about the transgressors' capabilities affected their perceived morality. We found that robots with emotional backstories (i.e., physio-emotional or socio-emotional) had higher perceived moral knowledge, emotional knowledge, and desire than other robots. We also found that humans with cognitive backstories were perceived with less emotional and moral knowledge than other humans. Our findings have consequences for robot ethics and robot design for HRI.more » « less
-
null (Ed.)This paper presents preliminary research on whether children will accept a robot as part of their ingroup, and on how a robot's group membership affects trust, closeness, and social support. Trust is important in human-robot interactions because it affects if people will follow robots' advice. In this study, we randomly assigned 11- and 12-year-old participants to a condition such that participants were either on a team with the robot (ingroup) or were opponents of the robot (outgroup) for an online game. Thus far, we have eight participants in the ingroup condition. Our preliminary results showed that children had a low level of trust, closeness, and social support with the robot. Participants had a much more negative response than we anticipated. We speculate that there will be a more positive response with an in-person setting rather than a remote one.more » « less
-
In Human–Robot Interaction, researchers typically utilize in-person studies to collect subjective perceptions of a robot. In addition, videos of interactions and interactive simulations (where participants control an avatar that interacts with a robot in a virtual world) have been used to quickly collect human feedback at scale. How would human perceptions of robots compare between these methodologies? To investigate this question, we conducted a 2x2 between-subjects study (N=160), which evaluated the effect of the interaction environment (Real vs. Simulated environment) and participants’ interactivity during human-robot encounters (Interactive participation vs. Video observations) on perceptions about a robot (competence, discomfort, social presentation, and social information processing) for the task of navigating in concert with people. We also studied participants’ workload across the experimental conditions. Our results revealed a significant difference in the perceptions of the robot between the real environment and the simulated environment. Furthermore, our results showed differences in human perceptions when people watched a video of an encounter versus taking part in the encounter. Finally, we found that simulated interactions and videos of the simulated encounter resulted in a higher workload than real-world encounters and videos thereof. Our results suggest that findings from video and simulation methodologies may not always translate to real-world human–robot interactions. In order to allow practitioners to leverage learnings from this study and future researchers to expand our knowledge in this area, we provide guidelines for weighing the tradeoffs between different methodologies.more » « less