skip to main content


Title: A Social Robot for Improving Interruptions Tolerance and Employability in Adults with ASD
Abstract—A growing population of adults with Autism Spectrum Disorders (ASD) chronically struggles to find and maintain employment. Previous work reveals that one barrier to employment for adults with ASD is dealing with workplace interruptions. In this paper, we present our design and evaluations of an in-home autonomous robot system that aims to improve users’ tolerance to interruptions. The Interruptions Skills Training and Assessment Robot (ISTAR) allows adults with ASD to practice handling interruptions to improve their employability. ISTAR is evaluated by surveys of employers and adults with ASD, and a week-long study in the homes of adults with ASD. Results show that users enjoy training with ISTAR, improve their ability to handle various work-relevant interruptions, and view the system as a valuable tool for improving their employment prospects.  more » « less
Award ID(s):
2033413 1936970 1813651 2106690 1955653
NSF-PAR ID:
10354177
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM/IEEE International Conference on Human-Robot Interaction (HRI 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Employment outcomes for autistic 1 individuals are often poorer relative to their neurotypical (NT) peers, resulting in a greater need for other forms of financial and social support. While a great deal of work has focused on developing interventions for autistic children, relatively less attention has been paid to directly addressing the employment challenges faced by autistic adults. One key impediment to autistic individuals securing employment is the job interview. Autistic individuals often experience anxiety in interview situations, particularly with open-ended questions and unexpected interruptions. They also exhibit atypical gaze patterns that may be perceived as, but not necessarily indicative of, disinterest or inattention. In response, we developed a closed-loop adaptive virtual reality (VR)–based job interview training platform, which we have named Career Interview Readiness in VR (CIRVR). CIRVR is designed to provide an engaging, adaptive, and individualized experience to practice and refine interviewing skills in a less anxiety-inducing virtual context. CIRVR contains a real-time physiology-based stress detection module, as well as a real-time gaze detection module, to permit individualized adaptation. We also present the first prototype of the CIRVR Dashboard, which provides visualizations of data to help autistic individuals as well as potential employers and job coaches make sense of the data gathered from interview sessions. We conducted a feasibility study with 9 autistic and 8 NT individuals to assess the preliminary usability and feasibility of CIRVR. Results showed differences in perceived usability of the system between autistic and NT participants, and higher levels of stress in autistic individuals during interviews. Participants across both groups reported satisfaction with CIRVR and the structure of the interview. These findings and feedback will support future work in improving CIRVR’s features in hopes for it to be a valuable tool to support autistic job candidates as well as their potential employers. 
    more » « less
  2. Antona, M ; null (Ed.)
    The employment settings for autistic individuals in the USA is grim. As more children are diagnosed with ASD, the number of adolescent and young adult with ASD will increase as well over the next decade. Based on reports, one of the main challenges in securing and retaining employment for individual with ASD is difficulty in communicating and working with others in workplace settings. Most vocational trainings focused on technical skills development and very few addresses teamwork skills development. In this study, we present the design of a collaborative virtual environment (CVE) that support autistic individual to develop their teamwork skills by working together with a partner in a shared virtual space. This paper described the CVE architecture, teamwork-based tasks design and quantitative measures to evaluate teamwork skills. A system validation was also carried out to validate the system design. The results showed that our CVE was able to support multiple users in the same shared environment, the tasks were tolerable by users, and all the quantitative measures are recorded accordingly. 
    more » « less
  3. Robot-mediated therapy is an emerging field of research seeking to improve therapy for children with Autism Spectrum Disorder (ASD). Current approaches to autonomous robot-mediated therapy often focus on having a robot teach a single skill to children with ASD and lack a personalized approach to each individual. More recently, Learning from Demonstration (LfD) approaches are being explored to teach socially assistive robots to deliver personalized interventions after they have been deployed but these approaches require large amounts of demonstrations and utilize learning models that cannot be easily interpreted. In this work, we present a LfD system capable of learning the delivery of autism therapies in a data-efficient manner utilizing learning models that are inherently interpretable. The LfD system learns a behavioral model of the task with minimal supervision via hierarchical clustering and then learns an interpretable policy to determine when to execute the learned behaviors. The system is able to learn from less than an hour of demonstrations and for each of its predictions can identify demonstrated instances that contributed to its decision. The system performs well under unsupervised conditions and achieves even better performance with a low-effort human correction process that is enabled by the interpretable model. 
    more » « less
  4. null (Ed.)
    Abstract Autism spectrum disorder (ASD) is a lifelong developmental condition that affects an individual’s ability to communicate and relate to others. Despite such challenges, early intervention during childhood development has shown to have positive long-term benefits for individuals with ASD. Namely, early childhood development of communicative speech skills has shown to improve future literacy and academic achievement. However, the delivery of such interventions is often time-consuming. Socially assistive robots (SARs) are a potential strategic technology that could help support intervention delivery for children with ASD and increase the number of individuals that healthcare professionals can positively affect. For SARs to be effectively integrated in real-world treatment for individuals with ASD, they should follow current evidence-based practices used by therapists such as Applied Behavior Analysis (ABA). In this work, we present a study that investigates the efficacy of applying well-known ABA techniques to a robot-mediated listening comprehension intervention delivered to children with ASD at a university-based ABA clinic. The interventions were delivered in place of human therapists to teach study participants a new skill as a part of their overall treatment plan. All the children participating in the intervention improved in the skill being taught by the robot and enjoyed interacting with the robot, as evident by high occurrences of positive affect as well as engagement during the sessions. One of the three participants has also reached mastery of the skill via the robot-mediated interventions. 
    more » « less
  5. null (Ed.)
    There have been significant advances in the technologies for robot-assisted lower-limb rehabilitation in the last decade. However, the development of similar systems for children has been slow despite the fact that children with conditions such as cerebral palsy (CP), spina bifida (SB) and spinal cord injury (SCI) can benefit greatly from these technologies. Robotic assisted gait therapy (RAGT) has emerged as a way to increase gait training duration and intensity while decreasing the risk of injury to therapists. Robotic walking devices can be coupled with motion sensing, electromyography (EMG), scalp electroencephalography (EEG) or other noninvasive methods of acquiring information about the user’s intent to design Brain-Computer Interfaces (BCI) for neuromuscular rehabilitation and control of powered exoskeletons. For users with SCI, BCIs could provide a method of overground mobility closer to the natural process of the brain controlling the body’s movement during walking than mobility by wheelchair. For adults there are currently four FDA approved lower-limb exoskeletons that could be incorporated into such a BCI system, but there are no similar devices specifically designed for children, who present additional physical, neurological and cognitive developmental challenges. The current state of the art for pediatric RAGT relies on large clinical devices with high costs that limit accessibility. This can reduce the amount of therapy a child receives and slow rehabilitation progress. In many cases, lack of gait training can result in a reduction in the mobility, independence and overall quality of life for children with lower-limb disabilities. Thus, it is imperative to facilitate and accelerate the development of pediatric technologies for gait rehabilitation, including their regulatory path. In this paper an overview of the U.S. Food and Drug Administration (FDA) clearance/approval process is presented. An example device has been used to navigate important questions facing device developers focused on providing lower limb rehabilitation to children in home-based or other settings beyond the clinic. 
    more » « less