The estimates of contiguousness parameters of an epidemic have been used for health-related policy and control measures such as non-pharmaceutical control interventions (NPIs). The estimates have varied by demographics, epidemic phase, and geographical region. Our aim was to estimate four contagiousness parameters: basic reproduction number ( R 0 ), contact rate, removal rate, and infectious period of coronavirus disease 2019 (COVID-19) among eight African countries, namely Angola, Botswana, Egypt, Ethiopia, Malawi, Nigeria, South Africa, and Tunisia using Susceptible, Infectious, or Recovered (SIR) epidemic models for the period 1 January 2020 to 31 December 2021. For reference, we also estimated these parameters for three of COVID-19's most severely affected countries: Brazil, India, and the USA. The basic reproduction number, contact and remove rates, and infectious period ranged from 1.11 to 1.59, 0.53 to 1.0, 0.39 to 0.81; and 1.23 to 2.59 for the eight African countries. For the USA, Brazil, and India these were 1.94, 0.66, 0.34, and 2.94; 1.62, 0.62, 0.38, and 2.62, and 1.55, 0.61, 0.39, and 2.55, respectively. The average COVID-19 related case fatality rate for 8 African countries in this study was estimated to be 2.86%. Contact and removal rates among an affected African population were positively and significantly associated with COVID-19 related deaths ( p -value < 0.003). The larger than one estimates of the basic reproductive number in the studies of African countries indicate that COVID-19 was still being transmitted exponentially by the 31 December 2021, though at different rates. The spread was even higher for the three countries with substantial COVID-19 outbreaks. The lower removal rates in the USA, Brazil, and India could be indicative of lower death rates (a proxy for good health systems). Our findings of variation in the estimate of COVID-19 contagiousness parameters imply that countries in the region may implement differential COVID-19 containment measures.
more »
« less
An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation
This work demonstrates the efficiency of using iterative ensemble smoothers to estimate the parameters of an SEIR model. We have extended a standard SEIR model with age-classes and compartments of sick, hospitalized, and dead. The data conditioned on are the daily numbers of accumulated deaths and the number of hospitalized. Also, it is possible to condition the model on the number of cases obtained from testing. We start from a wide prior distribution for the model parameters; then, the ensemble conditioning leads to a posterior ensemble of estimated parameters yielding model predictions in close agreement with the observations. The updated ensemble of model simulations has predictive capabilities and include uncertainty estimates. In particular, we estimate the effective reproductive number as a function of time, and we can assess the impact of different intervention measures. By starting from the updated set of model parameters, we can make accurate short-term predictions of the epidemic development assuming knowledge of the future effective reproductive number. Also, the model system allows for the computation of long-term scenarios of the epidemic under different assumptions. We have applied the model system on data sets from several countries, i.e., the four European countries Norway, England, The Netherlands, and France; the province of Quebec in Canada; the South American countries Argentina and Brazil; and the four US states Alabama, North Carolina, California, and New York. These countries and states all have vastly different developments of the epidemic, and we could accurately model the SARS-CoV-2 outbreak in all of them. We realize that more complex models, e.g., with regional compartments, may be desirable, and we suggest that the approach used here should be applicable also for these models.
more »
« less
- Award ID(s):
- 1722578
- PAR ID:
- 10354191
- Date Published:
- Journal Name:
- Foundations of Data Science
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2639-8001
- Page Range / eLocation ID:
- 413
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chowell, Gerardo (Ed.)To support decision-making and policy for managing epidemics of emerging pathogens, we present a model for inference and scenario analysis of SARS-CoV-2 transmission in the USA. The stochastic SEIR-type model includes compartments for latent, asymptomatic, detected and undetected symptomatic individuals, and hospitalized cases, and features realistic interval distributions for presymptomatic and symptomatic periods, time varying rates of case detection, diagnosis, and mortality. The model accounts for the effects on transmission of human mobility using anonymized mobility data collected from cellular devices, and of difficult to quantify environmental and behavioral factors using a latent process. The baseline transmission rate is the product of a human mobility metric obtained from data and this fitted latent process. We fit the model to incident case and death reports for each state in the USA and Washington D.C., using likelihood Maximization by Iterated particle Filtering (MIF). Observations (daily case and death reports) are modeled as arising from a negative binomial reporting process. We estimate time-varying transmission rate, parameters of a sigmoidal time-varying fraction of hospitalized cases that result in death, extra-demographic process noise, two dispersion parameters of the observation process, and the initial sizes of the latent, asymptomatic, and symptomatic classes. In a retrospective analysis covering March–December 2020, we show how mobility and transmission strength became decoupled across two distinct phases of the pandemic. The decoupling demonstrates the need for flexible, semi-parametric approaches for modeling infectious disease dynamics in real-time.more » « less
-
Abstract We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman–Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.more » « less
-
Borri, Alessandro (Ed.)Ever since the outbreak of the COVID-19 epidemic, various public health control strategies have been proposed and tested against the coronavirus SARS-CoV-2. We study three specific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccination control; the SEIR model with shield immunity control; and the susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC) model with quarantine control. We express the control requirement in metric temporal logic (MTL) formulas (a type of formal specification languages) which can specify the expected control outcomes such as “ the deaths from the infection should never exceed one thousand per day within the next three months ” or “ the population immune from the disease should eventually exceed 200 thousand within the next 100 to 120 days ”. We then develop methods for synthesizing control strategies with MTL specifications. To the best of our knowledge, this is the first paper to systematically synthesize control strategies based on the COVID-19 epidemic models with formal specifications. We provide simulation results in three different case studies: vaccination control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; and quarantine control for the COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The results show that the proposed synthesis approach can generate control inputs such that the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy the MTL specifications. The results also show that early intervention is essential in mitigating the spread of COVID-19, and more control effort is needed for more stringent MTL specifications. For example, based on the model in Lombardy, Italy, achieving less than 100 deaths per day and 10000 total deaths within 100 days requires 441.7% more vaccination control effort than achieving less than 1000 deaths per day and 50000 total deaths within 100 days.more » « less
-
Influenza epidemics cause considerable morbidity and mortality every year worldwide. Climate-driven epidemiological models are mainstream tools to understand seasonal transmission dynamics and predict future trends of influenza activity, especially in temperate regions. Testing the structural identifiability of these models is a fundamental prerequisite for the model to be applied in practice, by assessing whether the unknown model parameters can be uniquely determined from epidemic data. In this study, we applied a scaling method to analyse the structural identifiability of four types of commonly used humidity-driven epidemiological models. Specifically, we investigated whether the key epidemiological parameters (i.e., infectious period, the average duration of immunity, the average latency period, and the maximum and minimum daily basic reproductive number) can be uniquely determined simultaneously when prevalence data is observable. We found that each model is identifiable when the prevalence of infection is observable. The structural identifiability of these models will lay the foundation for testing practical identifiability in the future using synthetic prevalence data when considering observation noise. In practice, epidemiological models should be examined with caution before using them to estimate model parameters from epidemic data.more » « less