For many infectious diseases, including malaria and COVID-19, the host may experience more than one episode of infection, where reinfection occurs due to waning immunity. In this paper, we propose a new age-structured epidemic model to investigate the dynamics of such diseases with multiple infections. The model is based on a system of partial differential equations that describes the interplay between completely susceptible individuals, temporarily immune individuals, and infected individuals at different stages. The model incorporates both time and age-dependent variables and parameters. We derive the basic reproduction number and conduct rigorous analyses on the equilibrium solutions and their stability properties. Specifically, we study the global asymptotic stability of the disease-free equilibrium and obtain the explicit conditions for the occurrence of a backward bifurcation. Our findings could provide useful insights into the effects of disease prevention and intervention strategies such as vaccination campaigns.
more »
« less
Epidemic Conditions with Temporary Link Deactivation on a Network SIR Disease Model
The spread of an infectious disease depends on intrinsic properties of the disease as well as the connectivity and actions of the population. This study investigates the dynamics of an SIR type model which accounts for human tendency to avoid infection while also maintaining preexisting, interpersonal relationships. Specifically, we use a network model in which individuals probabilistically deactivate connections to infected individuals and later reconnect to the same individuals upon recovery. To analyze this network model, a mean field approximation consisting of a system of fourteen ordinary differential equations for the number of nodes and edges is developed. This system of equations is closed using a moment closure approximation for the number of triple links. By analyzing the differential equations, it is shown that, in addition to force of infection and recovery rate, the probability of deactivating edges and the average node degree of the underlying network determine if an epidemic occurs.
more »
« less
- Award ID(s):
- 1722578
- PAR ID:
- 10354196
- Date Published:
- Journal Name:
- SPORA: A Journal of Biomathematics
- Volume:
- 7
- ISSN:
- 2473-5493
- Page Range / eLocation ID:
- 72-85
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we introduce a novel multi-scale network model of two epidemics: HIV infection and opioid addiction. The HIV infection dynamics is modeled on a complex network. We determine the basic reproduction number of HIV infection, $$ \mathcal{R}_{v} $$, and the basic reproduction number of opioid addiction, $$ \mathcal{R}_{u} $$. We show that the model has a unique disease-free equilibrium which is locally asymptotically stable when both $$ \mathcal{R}_{u} $$ and $$ \mathcal{R}_{v} $$ are less than one. If $$ \mathcal{R}_{u} > 1 $$ or $$ \mathcal{R}_{v} > 1 $$, then the disease-free equilibrium is unstable and there exists a unique semi-trivial equilibrium corresponding to each disease. The unique opioid only equilibrium exist when the basic reproduction number of opioid addiction is greater than one and it is locally asymptotically stable when the invasion number of HIV infection, $$ \mathcal{R}^{1}_{v_i} $$ is less than one. Similarly, the unique HIV only equilibrium exist when the basic reproduction number of HIV is greater than one and it is locally asymptotically stable when the invasion number of opioid addiction, $$ \mathcal{R}^{2}_{u_i} $$ is less than one. Existence and stability of co-existence equilibria remains an open problem. We performed numerical simulations to better understand the impact of three epidemiologically important parameters that are at the intersection of two epidemics: $$ q_v $$ the likelihood of an opioid user being infected with HIV, $$ q_u $$ the likelihood of an HIV-infected individual becoming addicted to opioids, and $$ \delta $$ recovery from opioid addiction. Simulations suggest that as the recovery from opioid use increases, the prevalence of co-affected individuals, those who are addicted to opioids and are infected with HIV, increase significantly. We demonstrate that the dependence of the co-affected population on $$ q_u $$ and $$ q_v $$ are not monotone.more » « less
-
We present a new method for analysing stochastic epidemic models under minimal assumptions. The method, dubbed dynamic survival analysis (DSA), is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of partial differential equations may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from foot-and-mouth disease in the UK (2001) and COVID-19 in India (2020) show good accuracy and confirm the method’s versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modelling, analysing and interpreting epidemic data with the help of the DSA approach.more » « less
-
COVID-19 is a respiratory disease caused by a recently discovered, novel coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of COVID-19, with close to two million deaths. In the current social climate, the risk of COVID-19 infection is driven by individual and public perception of risk and sentiments. A number of factors influences public perception, including an individual’s belief system, prior knowledge about a disease and information about a disease. In this article, we develop a model for COVID-19 using a system of ordinary differential equations following the natural history of the infection. The model uniquely incorporates social behavioral aspects such as quarantine and quarantine violation. The model is further driven by people’s sentiments (positive and negative) which accounts for the influence of disinformation. People’s sentiments were obtained by parsing through and analyzing COVID-19 related tweets from Twitter, a social media platform across six countries. Our results show that our model incorporating public sentiments is able to capture the trend in the trajectory of the epidemic curve of the reported cases. Furthermore, our results show that positive public sentiments reduce disease burden in the community. Our results also show that quarantine violation and early discharge of the infected population amplifies the disease burden on the community. Hence, it is important to account for public sentiment and individual social behavior in epidemic models developed to study diseases like COVID-19.more » « less
-
Survival dynamical systems: individual-level survival analysis from population-level epidemic modelsIn this paper, we show that solutions to ordinary differential equations describing the large-population limits of Markovian stochastic epidemic models can be interpreted as survival or cumulative hazard functions when analysing data on individuals sampled from the population. We refer to the individual-level survival and hazard functions derived from population-level equations as a survival dynamical system (SDS). To illustrate how population-level dynamics imply probability laws for individual-level infection and recovery times that can be used for statistical inference, we show numerical examples based on synthetic data. In these examples, we show that an SDS analysis compares favourably with a complete-data maximum-likelihood analysis. Finally, we use the SDS approach to analyse data from a 2009 influenza A(H1N1) outbreak at Washington State University.more » « less
An official website of the United States government

