skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximizing Mission Utility within Operational Constraints for the SWARM-EX CubeSat Mission
With space more accessible than ever, academic institutions like the University of Colorado (CU) Boulder have exhibited that CubeSats (compact, homogeneous, rectangular satellites with masses below 14 [kg]) can be leveraged for remarkable space missions capable of making significant advances to both scientific and technological fields. One such CubeSat project is the NSF-funded Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX), which will launch three 3U CubeSats into a “swarm” that will demonstrate autonomous formation flying capabilities while simultaneously studying the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere region. Although the small stature of CubeSats and their standardized deployer options help to lower unit development cost and facilitate launch opportunities, the physical size limits of CubeSats prove to be a double-edged sword vis-à-vis sustaining a stable power state while hosting instruments with high power demands and often strict pointing requirements. For SWARM-EX, this issue is magnified by the mission’s ambitious goals; to comply with mission requirements, a SWARM-EX spacecraft is required to concurrently (1) point the science instruments no more than 30° off ram when they are operational, (2) point the GNSS patch antenna no more than 30° off zenith when the spacecraft are separated by ≤ 10 [km], (3) point the X-Band patch antenna no more than 18° off boresight from the ground station during downlink, (4) maximize the differential ballistic coefficient during differential drag maneuvers, and (5) maximize solar array power generation at all times. Consequently, advanced CubeSat Missions like SWARM-EX require innovative systems engineering solutions to remain power-positive during on-orbit operations. Through a combination of intricate pointing profiles, orbital simulations, a comprehensive and coordinated ConOps, battery state of charge simulation tools, and expertise from previous CubeSat missions, the SWARM-EX team has conceived a plan to successfully meet all these mission requirements; it is the aim of the authors to illuminate these strategies as a case study.  more » « less
Award ID(s):
1936665
PAR ID:
10354204
Author(s) / Creator(s):
Date Published:
Journal Name:
AIAA SCITECH 2022 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) is a National Science Foundation (NSF) sponsored CubeSat mission distributed across six colleges and universities in the United States. The project has three primary goals: (1) contributing to aeronomy and space weather knowledge, (2) demonstrating novel engineering technology, and (3) advancing higher education. The scientific focus of SWARM-EX is to study the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere (I-T) region. Since the mission consists of three spacecraft operating in a swarm, SWARM-EX will take in-situ measurements of the neutral and ion composition on timescales of less than an orbital period to study the persistence and correlation between different phenomena in the I-T region. The engineering objectives of SWARM-EX are focused on advancing the state of the art in spacecraft formation flying. In addition to being the first passively safe, autonomous formation of more than two spacecraft, SWARM-EX will demonstrate several other key innovations. These include a novel hybrid propulsive/differential drag control scheme and the realization of a distributed aeronomy sensor. As a project selected by the NSF for its broader impacts as well as its intellectual merit, SWARM-EX aims to use CubeSat development as a vehicle for education. The six collaborating institutions have varying levels of CubeSat experience and involve students who range from first-year undergraduates to Ph.D. candidates. These differences in knowledge, as well as the distributed nature of the program, present a tremendous educational opportunity, but also raise challenges such as cross-institutional communication and coordination, document sharing and file management, and hardware development. By detailing its procedures for overcoming these challenges, the SWARM-EX team believes that it may serve as a case study for the coordination of a successful CubeSat program distributed across multiple institutions. 
    more » « less
  2. null (Ed.)
    This paper presents the preliminary system design of the Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission, a multi-CubeSat distributed telescope which will image the solar corona to investigate the existence of underlying energy release mechanisms. VISORS was conceived in the National Science Foundation (NSF) CubeSat Innovations Ideas Lab Workshop held in 2019 to address NSF science goals with innovative technologies. This mission will gather imagery that directly pertains to theories of coronal heating. In the paper, novel technologies are described that enable the VISORS mission to meet its challenging requirements and achieve the mission and science goals. The VISORS formation is composed of two 6U CubeSats that fly 40 meters apart during science imaging as a distributed space telescope, with the lead spacecraft containing the optics and the trailing spacecraft containing the detector. An orbit maneuver planner utilizes GNSS carrier-phase measurements to provide a high-precision navigation solution, and a series of ceramic antenna arrays employ a novel 5.8 GHz inter-satellite crosslink. A 3 degrees-of-freedom (3DOF) propulsion system provides the capability for formation adjustments and active collision avoidance. The remaining spacecraft functions are handled by a spacecraft bus supplied by a commercial vendor, and the system integration is conducted by the VISORS mission team. Careful analysis of the system design and concept of operations led to the development of a safety plan which significantly reduces the risk of collision in a large subset of off-nominal scenarios. With a completed preliminary design review in Q4 2020 and a projected launch date in late 2023, this collaboration among 10 different universities, NASA, and a commercial partner is an upcoming mission that will demonstrate a new assembly of highly equipped CubeSats and their ability to conduct a state-of-the-art science mission in a cost and time effective manner. 
    more » « less
  3. null (Ed.)
    This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At this frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and other subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved. 
    more » « less
  4. null (Ed.)
    The VIrtual Super Optics Reconfigurable Swarm (VISORS) mission is a distributed telescope consisting of two 6U CubeSats separated by forty meters that will obtain high-resolution images of active solar regions in the extreme ultraviolet spectrum. This mission is challenging because the CubeSats must autonomously control their relative motion with unprecedented accuracy while operating in close proximity. This paper presents three contributions that enable the VISORS mission to meet its challenging requirements. First, passively safe absolute and relative orbit designs for distributed telescopes that provide regular periods of alignment with inertial targets are developed using relative eccentricity/inclination vector separation. Second, a guidance, navigation, and control system design is proposed to meet the demanding relative motion control requirements. Third, a concept of operations is proposed that minimizes mission operations load when the formation is not actively performing observations. This concept of operations includes a safety plan to address on-orbit anomalies. The performance of the guidance, navigation, and control system is validated through Monte Carlo simulations including all significant error sources and operational constraints. These simulations show that the mission requirements are met with margin, providing a preliminary demonstration of the feasibility of accurate autonomous formation control with CubeSats. 
    more » « less
  5. The University of Illinois, in collaboration with NASA Jet Propulsion Laboratory (JPL) and NASA Ames Research Center, has developed a novel Attitude Control System (ACS) called the Strain Actuated Solar Arrays (SASA), with sub-milli-arcsecond pointing capability. SASA uses strain-producing actuators to deform flexible deployable structures, and the resulting reaction forces rotate the satellite. This momentum transfer strategy is used for jitter reduction and small-angle slew maneuvers. The system is currently at a Technology Readiness Level of 4-5 and has an upcoming demonstration flight on the CAPSat CubeSat mission. An extension to the SASA concept, known as Multifunctional Structures for Attitude Control (MSAC), enables arbitrarily large-angle slew maneuvers in addition to jitter cancellation. MSAC can potentially replace reaction wheels and control moment gyroscopes for attitude control systems, thereby eliminating a key source of jitter noise. Both SASA and MSAC are more reliable because of fewer failure modes and lower failure rates as compared to conventional ACS, while having an overall smaller mass, volume, and power budget. The paper discusses the advantages of using SASA and MSAC for a wide range of spacecraft and variant mission classes. 
    more » « less