skip to main content


Title: Maximizing Mission Utility within Operational Constraints for the SWARM-EX CubeSat Mission
With space more accessible than ever, academic institutions like the University of Colorado (CU) Boulder have exhibited that CubeSats (compact, homogeneous, rectangular satellites with masses below 14 [kg]) can be leveraged for remarkable space missions capable of making significant advances to both scientific and technological fields. One such CubeSat project is the NSF-funded Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX), which will launch three 3U CubeSats into a “swarm” that will demonstrate autonomous formation flying capabilities while simultaneously studying the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere region. Although the small stature of CubeSats and their standardized deployer options help to lower unit development cost and facilitate launch opportunities, the physical size limits of CubeSats prove to be a double-edged sword vis-à-vis sustaining a stable power state while hosting instruments with high power demands and often strict pointing requirements. For SWARM-EX, this issue is magnified by the mission’s ambitious goals; to comply with mission requirements, a SWARM-EX spacecraft is required to concurrently (1) point the science instruments no more than 30° off ram when they are operational, (2) point the GNSS patch antenna no more than 30° off zenith when the spacecraft are separated by ≤ 10 [km], (3) point the X-Band patch antenna no more than 18° off boresight from the ground station during downlink, (4) maximize the differential ballistic coefficient during differential drag maneuvers, and (5) maximize solar array power generation at all times. Consequently, advanced CubeSat Missions like SWARM-EX require innovative systems engineering solutions to remain power-positive during on-orbit operations. Through a combination of intricate pointing profiles, orbital simulations, a comprehensive and coordinated ConOps, battery state of charge simulation tools, and expertise from previous CubeSat missions, the SWARM-EX team has conceived a plan to successfully meet all these mission requirements; it is the aim of the authors to illuminate these strategies as a case study.  more » « less
Award ID(s):
1936665
NSF-PAR ID:
10354204
Author(s) / Creator(s):
Date Published:
Journal Name:
AIAA SCITECH 2022 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents the preliminary system design of the Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission, a multi-CubeSat distributed telescope which will image the solar corona to investigate the existence of underlying energy release mechanisms. VISORS was conceived in the National Science Foundation (NSF) CubeSat Innovations Ideas Lab Workshop held in 2019 to address NSF science goals with innovative technologies. This mission will gather imagery that directly pertains to theories of coronal heating. In the paper, novel technologies are described that enable the VISORS mission to meet its challenging requirements and achieve the mission and science goals. The VISORS formation is composed of two 6U CubeSats that fly 40 meters apart during science imaging as a distributed space telescope, with the lead spacecraft containing the optics and the trailing spacecraft containing the detector. An orbit maneuver planner utilizes GNSS carrier-phase measurements to provide a high-precision navigation solution, and a series of ceramic antenna arrays employ a novel 5.8 GHz inter-satellite crosslink. A 3 degrees-of-freedom (3DOF) propulsion system provides the capability for formation adjustments and active collision avoidance. The remaining spacecraft functions are handled by a spacecraft bus supplied by a commercial vendor, and the system integration is conducted by the VISORS mission team. Careful analysis of the system design and concept of operations led to the development of a safety plan which significantly reduces the risk of collision in a large subset of off-nominal scenarios. With a completed preliminary design review in Q4 2020 and a projected launch date in late 2023, this collaboration among 10 different universities, NASA, and a commercial partner is an upcoming mission that will demonstrate a new assembly of highly equipped CubeSats and their ability to conduct a state-of-the-art science mission in a cost and time effective manner. 
    more » « less
  2. null (Ed.)
    Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective. 
    more » « less
  3. The Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) is a National Science Foundation (NSF) sponsored CubeSat mission distributed across six colleges and universities in the United States. The project has three primary goals: (1) contributing to aeronomy and space weather knowledge, (2) demonstrating novel engineering technology, and (3) advancing higher education. The scientific focus of SWARM-EX is to study the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere (I-T) region. Since the mission consists of three spacecraft operating in a swarm, SWARM-EX will take in-situ measurements of the neutral and ion composition on timescales of less than an orbital period to study the persistence and correlation between different phenomena in the I-T region. The engineering objectives of SWARM-EX are focused on advancing the state of the art in spacecraft formation flying. In addition to being the first passively safe, autonomous formation of more than two spacecraft, SWARM-EX will demonstrate several other key innovations. These include a novel hybrid propulsive/differential drag control scheme and the realization of a distributed aeronomy sensor. As a project selected by the NSF for its broader impacts as well as its intellectual merit, SWARM-EX aims to use CubeSat development as a vehicle for education. The six collaborating institutions have varying levels of CubeSat experience and involve students who range from first-year undergraduates to Ph.D. candidates. These differences in knowledge, as well as the distributed nature of the program, present a tremendous educational opportunity, but also raise challenges such as cross-institutional communication and coordination, document sharing and file management, and hardware development. By detailing its procedures for overcoming these challenges, the SWARM-EX team believes that it may serve as a case study for the coordination of a successful CubeSat program distributed across multiple institutions. 
    more » « less
  4. null (Ed.)
    This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At this frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and other subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved. 
    more » « less
  5. Radiation poses known and serious risks to smallsat survivability and mission duration, with effects falling into two categories: long-term total ionizing dose (TID) and instantaneous single event effects (SEE). Although literature exists on the topic of addressing TID in smallsats, few resources exist for addressing SEEs. Many varieties of SEEs exist, such as bit upsets and latch ups, which can occur in any electronic component containing active semiconductors (such as transistors). SEE consequences range from benign to destructive, so mission reliability can be enhanced by implementing fault protection strategies based on predicted SEE rates. Unfortunately, SEE rates are most reliably estimated through experimental testing that is often too costly for smallsat-scale missions. Prior test data published by larger programs exist, but may be sparse or incompatible with the environment of a particular mission. Despite these limitations, a process may be followed to gain insights and make informed design decisions for smallsats in the absence of hardware testing capabilities or similar test data. This process is: (1) Define the radiation environment; (2) identify the most critical and/or susceptible components on a spacecraft; (3) perform a search for compatible prior test data and/or component class data; (4) evaluate mission-specific SEE rates from available data; (5) study the rates alongside the mission requirements to identify high-risk areas of potential mitigation. The methodology developed in this work is based on the multi-institutional, National Science Foundation (NSF) Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) mission. The steps taken during SWARM-EX’s radiation analysis alongside the detailed methodology serve as a case study for how these techniques can be applied to increasing the reliability of a university-scale smallsat mission. 
    more » « less