skip to main content


Title: Formation Flying Orbit and Control Concept for the VISORS Mission
The VIrtual Super Optics Reconfigurable Swarm (VISORS) mission is a distributed telescope consisting of two 6U CubeSats separated by forty meters that will obtain high-resolution images of active solar regions in the extreme ultraviolet spectrum. This mission is challenging because the CubeSats must autonomously control their relative motion with unprecedented accuracy while operating in close proximity. This paper presents three contributions that enable the VISORS mission to meet its challenging requirements. First, passively safe absolute and relative orbit designs for distributed telescopes that provide regular periods of alignment with inertial targets are developed using relative eccentricity/inclination vector separation. Second, a guidance, navigation, and control system design is proposed to meet the demanding relative motion control requirements. Third, a concept of operations is proposed that minimizes mission operations load when the formation is not actively performing observations. This concept of operations includes a safety plan to address on-orbit anomalies. The performance of the guidance, navigation, and control system is validated through Monte Carlo simulations including all significant error sources and operational constraints. These simulations show that the mission requirements are met with margin, providing a preliminary demonstration of the feasibility of accurate autonomous formation control with CubeSats.  more » « less
Award ID(s):
1936576
NSF-PAR ID:
10233970
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIAA Scitech 2021 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents the preliminary system design of the Virtual Super-resolution Optics with Reconfigurable Swarms (VISORS) mission, a multi-CubeSat distributed telescope which will image the solar corona to investigate the existence of underlying energy release mechanisms. VISORS was conceived in the National Science Foundation (NSF) CubeSat Innovations Ideas Lab Workshop held in 2019 to address NSF science goals with innovative technologies. This mission will gather imagery that directly pertains to theories of coronal heating. In the paper, novel technologies are described that enable the VISORS mission to meet its challenging requirements and achieve the mission and science goals. The VISORS formation is composed of two 6U CubeSats that fly 40 meters apart during science imaging as a distributed space telescope, with the lead spacecraft containing the optics and the trailing spacecraft containing the detector. An orbit maneuver planner utilizes GNSS carrier-phase measurements to provide a high-precision navigation solution, and a series of ceramic antenna arrays employ a novel 5.8 GHz inter-satellite crosslink. A 3 degrees-of-freedom (3DOF) propulsion system provides the capability for formation adjustments and active collision avoidance. The remaining spacecraft functions are handled by a spacecraft bus supplied by a commercial vendor, and the system integration is conducted by the VISORS mission team. Careful analysis of the system design and concept of operations led to the development of a safety plan which significantly reduces the risk of collision in a large subset of off-nominal scenarios. With a completed preliminary design review in Q4 2020 and a projected launch date in late 2023, this collaboration among 10 different universities, NASA, and a commercial partner is an upcoming mission that will demonstrate a new assembly of highly equipped CubeSats and their ability to conduct a state-of-the-art science mission in a cost and time effective manner. 
    more » « less
  2. With space more accessible than ever, academic institutions like the University of Colorado (CU) Boulder have exhibited that CubeSats (compact, homogeneous, rectangular satellites with masses below 14 [kg]) can be leveraged for remarkable space missions capable of making significant advances to both scientific and technological fields. One such CubeSat project is the NSF-funded Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX), which will launch three 3U CubeSats into a “swarm” that will demonstrate autonomous formation flying capabilities while simultaneously studying the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere region. Although the small stature of CubeSats and their standardized deployer options help to lower unit development cost and facilitate launch opportunities, the physical size limits of CubeSats prove to be a double-edged sword vis-à-vis sustaining a stable power state while hosting instruments with high power demands and often strict pointing requirements. For SWARM-EX, this issue is magnified by the mission’s ambitious goals; to comply with mission requirements, a SWARM-EX spacecraft is required to concurrently (1) point the science instruments no more than 30° off ram when they are operational, (2) point the GNSS patch antenna no more than 30° off zenith when the spacecraft are separated by ≤ 10 [km], (3) point the X-Band patch antenna no more than 18° off boresight from the ground station during downlink, (4) maximize the differential ballistic coefficient during differential drag maneuvers, and (5) maximize solar array power generation at all times. Consequently, advanced CubeSat Missions like SWARM-EX require innovative systems engineering solutions to remain power-positive during on-orbit operations. Through a combination of intricate pointing profiles, orbital simulations, a comprehensive and coordinated ConOps, battery state of charge simulation tools, and expertise from previous CubeSat missions, the SWARM-EX team has conceived a plan to successfully meet all these mission requirements; it is the aim of the authors to illuminate these strategies as a case study. 
    more » « less
  3. This paper illustrates an approach to integrate learning into spacecraft automated rendezvous, proximity maneuvering, and docking (ARPOD) operations. Spacecraft rendezvous plays a significant role in many spacecraft missions including orbital transfers, ISS re-supply, on-orbit refueling and servicing, and debris removal. On one hand, precise modeling and prediction of spacecraft dynamics can be challenging due to the uncertainties and perturbation forces in the spacecraft operating environment and due to multi-layered structure of its nominal control system. On the other hand, spacecraft maneuvers need to satisfy required constraints (thrust limits, line of sight cone constraints, relative velocity of approach, etc.) to ensure safety and achieve ARPOD objectives. This paper considers an application of a learning-based reference governor (LRG) to enforce constraints without relying on a dynamic model of the spacecraft during the mission. Similar to the conventional Reference Governor (RG), the LRG is an add-on supervisor to a closed-loop control system, serving as a pre-filter on the command generated by the ARPOD planner. As the RG, LRG modifies, if it becomes necessary, the command to a constraint-admissible reference to enforce specified constraints. The LRG is distinguished, however, by the ability to rely on learning instead of an explicit model of the system, and guarantees constraints satisfaction during and after the learning. Simulations of spacecraft constrained relative motion maneuvers on a low Earth orbit are reported that demonstrate the effectiveness of the proposed approach. 
    more » « less
  4. null (Ed.)
    The Virtual Super-Resolution Optics with Reconfigurable Swarms (VISORS) mission is a multi-CubeSat distributed telescope which will image the solar corona to investigate the existence of underlying energy release mechanisms. Such a task requires angular resolutions of less than 0.2 arc-seconds in extreme ultraviolet, which cannot be economically done with a conventional space telescope. Performing such a mission requires unprecedented relative navigation tolerances, a need for active collision avoidance, a development of inter-satellite communication, and a propulsion system that enables the relative navigation maneuvers. The mission was initially conceived as a three 3U satellite formation in the NSF CubeSat Innovations Ideas Lab to address NSF science goals with innovative technologies. Once beginning conceptual subsystem design, it was evident that significant constraints linked to the three 3U satellite formation configuration limit the likelihood of mission success and increase mission risk. A trade study was conducted to determine potential resolutions to the problems associated with the initial three 3U satellite formation configuration. The completion of the trade study resulted in a major design change to a two 6U satellite configuration that resolved the issues associated with the initial configuration, improved mission success while reducing risk, and intends to incorporate novel CubeSat technologies, all of which enable the mission to move forward. This paper discusses the path that led the team to conduct the trade study, the design alternatives considered, and the innovative subsystem technologies that were conceived as a result of updating the satellite formation configuration. 
    more » « less
  5. Distributed space systems, and specifically spacecraft formations, have been identified as a new paradigm for addressing important science questions. However, when it comes to verifying and validating these systems before launch, there is the added challenge of figuring out how to test the formation’s holistic operations on the ground since a full end-to-end mission simulation is likely infeasible due to the need for costly testing infrastructure/facilities. Building on established methods for single-spacecraft testing, this paper presents a two-phase testing methodology that can be applied to precision formation flying missions with budget, timeframe, and resource constraints. First, a testing plan with unique considerations to address the coordinated and coupled nature of precision formation flight is devised to obtain high system confidence on the ground, and second, the formation’s holistic behavior is refined on orbit during the mission’s in-space commissioning. This approach structures the pre-launch testing to make efficient use of the limited test infrastructure on hand and leverages a sequential configuration process combined with built-in operational flexibility on orbit to safely finish characterizing the formation’s performance so that it can meet mission requirements 
    more » « less