skip to main content


Title: Exsolution of nanoparticles on A-site-deficient lanthanum ferrite perovskites: its effect on co-electrolysis of CO2 and H2O
La0.7Sr0.2Ni0.2Fe0.8O3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La2NiO4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H2/N2) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 104 particle per μm2) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H2O and CO2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La2NiO4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H2O, CO2, and H2O/CO2.  more » « less
Award ID(s):
1932638
NSF-PAR ID:
10354281
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of materials chemistry
ISSN:
2050-7488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 . 
    more » « less
  2. Abstract

    Oxidative coupling of methane (OCM) can be performed electrocatalytically by utilizing solid oxide cells, which provide a readily controlled oxygen supply through dense electrolytes. La0.7Sr0.2Ni0.2Fe0.8O3(LSNF) perovskite is an effective anode for OCM. Its surface characteristics and electrocatalytic activity can be improved by reduction and the resultant exsolution of bimetallic NiFe nanoparticles from its bulk. X‐ray diffraction (XRD) and environmental transmission electron microscopy proved that the evolution of hetero‐phases under reducing environment resulted in bimetallic NiFe nanoparticles being formed on the surface. A 36 % improvement in C2+hydrocarbon production rate was achieved due to the reduction of LSNF with the exsolved NiFe nanoparticles. Co‐feeding of H2O enhanced selective conversion of CH4resulting in the production rate of C2+hydrocarbons being increased by 56 %. Analysis of impedance spectra and in‐situ DRIFTS under a CH4+H2O atmosphere provided an understanding for the enhancement on the electrocatalytic OCM.

     
    more » « less
  3. Abstract

    Memristive devices are among the most prominent candidates for future computer memory storage and neuromorphic computing. Though promising, the major hurdle for their industrial fabrication is their device‐to‐device and cycle‐to‐cycle variability. These occur due to the random nature of nanoionic conductive filaments, whose rupture and formation govern device operation. Changes in filament location, shape, and chemical composition cause cycle‐to‐cycle variability. This challenge is tackled by spatially confining conductive filaments with Ni nanoparticles. Ni nanoparticles are integrated on the bottom La0.2Sr0.7Ti0.9Ni0.1O3−δelectrode by an exsolution method, in which, at high temperatures under reducing conditions, Ni cations migrate to the perovskite surface, generating metallic nanoparticles. This fabrication method offers fine control over particle size and density and ensures strong particle anchorage in the bottom electrode, preventing movement and agglomeration. In devices based on amorphous SrTiO3, it is demonstrated that as the exsolved Ni nanoparticle diameter increases up to50 nm, the ratio between the ON and OFF resistance states increases from single units to 180 and the variability of the low resistance state reaches values below 5%. Exsolution is applied for the first time to engineer solid–solid interfaces extending its realm of application to electronic devices.

     
    more » « less
  4. A simple procedure was developed to synthesize molybdenum carbide nanoparticles (Mo2C/BC) by carburization of molybdate salts supported on the biochar from pyrolysis of biomass without using extra carbon source or reducing gas. The molybdenum carbide formation procedure investigated by in-situ XRD and TGA-MS indicated that the phase transitions followed the path of (NH4)6Mo7O24·4H2O → (NH4)2Mo3O10 → (NH4)2Mo14O42 → Mo8O23 → Mo4O11 → MoO2 → Mo2C. The volatile gases CO, H2, and CH4 evolved from biochar and the biochar solid carbon participated in the reduction of molybdenum species, while the biochar and CH4 served as carbon sources for the carburization. Temperature programmed surface reactions of Mo2C/BC indicated that CH4 dissociated as CH4 ⇋ C∗ + 2H2 on the catalyst surface, and CO2 reacted as CO2 + C∗ ⇋ 2CO+ ∗ due to oxidation of Mo2C. Both experiment data and thermodynamic analysis for the study of operation conditions of CO2 reforming of CH4 clearly demonstrated that the yields of H2 and CO increased with the increased temperature and the reasonable conversions should be performed at 850 °C, at which both CH4 and CO2 conversions were higher than 80%. 
    more » « less
  5. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrocatlytic hydrogenation (ECH) of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels We further studied the mechanisms on the Pb electrode, based on the potential regulated ECH and ER products. Isotopic incorporation studies and electrokinetics have confirmed ECH process to alcohol and alkyl product followed different pathways: alcohol was generated from Langmuir Hinshelwood step through surface-bound furfural and hydrogen, which is sensitive to surface structures. In contrast, alkyl product was formed through an Eley–Rideal step via surface-bound furfural and the inner-sphere protons. By modifying the electrode/electrolyte interface, we have elucidated H2O and H3O+ matters in forming alcohol and alkyl products, respectively. Dynamic oscillation studies and electron paramagnetic resonance (EPR) finally confirmed that the alcohol and dimer products shared the same intermediate. The dimer was formed through the intermediate desorption from the surface to form radicals and the self-coupling of two radicals at the bulk electrolyte. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator. We recently developed a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF [6]. The flow cell has a remarkably low cell voltage: from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less