skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of Graphitic Mesoporous Carbon from Metal Impregnated Silica Template for Proton Exchange Membrane Fuel Cell Application
Abstract High surface area graphitic mesoporous carbons (M‐mGMC; M=Ni, Fe, Co or Ni‐Fe) were synthesizedviacatalytic graphitization using a hard template based synthesis method. In house prepared SBA‐15 silica material was impregnated with metal precursors to obtain M/SBA‐15, template for M‐mGMC synthesis. These materials were studied using different material characterization techniques, such as nitrogen adsorption desorption (BET), X‐ray diffraction (XRD) analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Specific surface area ranging from 1,227.9 m2g−1to 1,320.7 m2g−1was observed for four M‐mGMCs. Raman spectroscopy, XPS and wide angle XRD suggested presence of graphitic structure in these materials along with disorders. Electrocatalytic performance of these materials along with conventional carbon black (Vulcan XC‐72) were evaluated in a single‐stack proton exchange membrane fuel cell (PEMFC). Pt/NiFe‐mGMC exhibited enhanced electrocatalytic activity compared to Pt/Ni‐mGMC, Pt/Fe‐mGMC and Pt/Co‐mGMC electrocatalysts. However, Pt/NiFe‐mGMC lacked adequate proton transport in membrane electrode assembly (MEA) compared to Pt/Vulcan XC‐72. This exploratory study showed that NiFe‐mGMC may find application as electrocatalyst support material in PEMFC.  more » « less
Award ID(s):
1736173
PAR ID:
10083655
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fuel Cells
Volume:
19
Issue:
1
ISSN:
1615-6846
Page Range / eLocation ID:
p. 27-34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li−O2 batteries with carbon electrodes made from three commercial carbons and carbon made from waste tea leaves are investigated in this study. The waste tea leaves are recycled from household tea leaves and activated using KOH. The carbon materials have various specific surface areas, and porous structures are characterized by the N2 adsorption/desorption. Vulcan XC 72 carbon shows a higher specific surface area (264.1 m2/g) than the acetylene black (76.5 m2/g) and Super P (60.9 m2/g). The activated tea leaves have an extremely high specific surface area of 2868.4 m2/g. First, we find that the commercial carbons achieve similar discharge capacities of ∼2.50 Ah/g at 0.5 mA/cm2. The micropores in carbon materials result in a high specific surface area but cannot help to achieve higher discharge capacity because it cannot accommodate the solid discharge product (Li2O2). Mixing the acetylene black and the Vulcan XC 72 improves the discharge capacity due to the optimized porous structure. The discharge capacity increases by 42% (from 2.73 ± 0.46 to 3.88 ± 0.22 Ah/g) at 0.5 mA/cm2 when the mass fraction of Vulcan XC 72 changes from 0 to 0.3. Second, the electrode made from activated tea leaves is demonstrated for the first time in Li−O2 batteries. Mixtures of activated tea leaves and acetylene black confirm that mixtures of carbon material with different specific surface areas can increase the discharge capacity. Moreover, carbon made from recycled tea leaves can reduce the cost of the electrode, making electrodes more economically achievable. This study practically enhances the discharge capacity of Li−O2 batteries using mixed carbons and provides a method for fabricating carbon electrodes with lower cost and better environmental friendliness. 
    more » « less
  2. Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H2/air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm−2in H2/air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C3N4, leading to a micro‐mesoporous substrate. 
    more » « less
  3. Abstract In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1−xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles. 
    more » « less
  4. Abstract In this study, high yields of CO are reported from CO2using the silica (SiO2) supported perovskite oxide, La0.75Sr0.25FeO3(LSF), composites in the reverse water gas shift chemical looping (RWGS‐CL) process. XRD patterns of materials formed upon adding SBA‐15 to the perovskite sol‐gel precursor solution indicated successful formation of an orthorhombic perovskite oxide structure in the composites. The total surface area increased by ∼300 % with the addition of 50 % LSF to SBA‐15 by mass and surface accessibility of perovskite oxide crystallites was verified by CO2chemisorption and XPS measurements. Composite materials achieved up to a factor of 10 increases in CO yields (∼3.5 vs 0.35 mmol CO/gLSF) compared to pure LSF through six consecutive RWGS‐CL cycles at 700 °C. Following these RWGS‐CL cycles, XRD Scherrer analyses showed that the perovskite oxide in the composite material decreased in crystallite size. This approach to synthesis of supported perovskite oxides is expected to be valuable for large‐scale CO2conversion by RWGS‐CL. 
    more » « less
  5. Ni/SBA-15 meso-structured catalysts modified with chromium and CeO2 (Ni–Cr-CeO2/SBA-15) were utilized to produce hydrogen from glycerol steam reforming (GSR). The catalysts were synthesized by a one-pot hydrothermal process and extensively characterized by analytical techniques such as N2 adsorption–desorption (BET), H2-temperature programmed reduction (H2-TPR), powder X-ray diffraction (PXRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), and transmission electron microscopy (TEM). The low-angle XRD reflections affirmed that the catalysts were crystalline and possessed a 2D-ordered porosity. The BET results depicted that all the catalysts exhibited a good surface area ranging from 633 to 792m2/g, and the pore sizes were consistently in the mesoporous range (between 3 and 5 nm). TEM analysis of both calcined and spent catalysts revealed that the metal active sites were embedded in the hybrid CeO2-SiO2 support. Overall, the Ni-based catalysts exhibited higher glycerol conversion -12Ni-SBA-15–99.9%, 12Ni3CeO2-SBA-15–89.4%, and 8Ni4Cr3CeO2-SBA-15–99.7%. Monometallic 12Ni/SBA-15 performed exceptionally well, while 12Cr/SBA-15 performed poorly with the highest 71.48% CO selectivity. For short-term GSR reactions, CeO2 addition to 12Ni/SBA-15 did not have any effect, whereas Cr addition resulted in a 32% decrease in H2 selectivity. The long-term stability studies of 12Ni-SBA-15 showed H2 selectivity of ~ 64% and ~ 98% glycerol conversion. However, its activity was short-lived. After 20–30 h, the H2 selectivity and conversion dropped precipitously to 40%. The doping of mesoporous Ni/SBA-15 with Cr and CeO2 remarkably enhanced the long-term stability of the catalyst for 12Ni3CeO2-SBA-15, and 8Ni4Cr3CeO2-SBA-15 catalyst which showed ~ 58% H2 selectivity and ~ 100% conversion for the entire 60 h. Interestingly, Cr and CeO2 seem to improve the shelf-life of Ni-SBA-15 via different mechanistic pathways. CeO2 mitigated Ni poisoning through coke oxidation whereas Cr bolstered the catalyst stability via maintaining a well-defined pore size, structural rigidity, and integrity of the heterogeneous framework, thereby restricting structural collapse, and hence retard sintering of the Ni active sites during the long-term 60 h of continuous reaction. Hydrogen generation from renewable biomass like glycerol could potentially serve as a sustainable energy source and could substantially help reduce the carbon footprint of the environment 
    more » « less