skip to main content


Title: Identifying hydroxylated copper dimers in SSZ-13 via UV-vis-NIR spectroscopy
Cu-Exchanged zeolites are promising materials for the selective conversion of methane to methanol. Their activity is attributed to the presence of small Cu-oxo and Cu-hydroxy clusters, but the nature of active centers in various zeolite structures is still under debate. In this contribution, we combine time dependent density functional theory with spin–orbit coupling to predict the optical spectra of various Cu monomers and dimers in SSZ-13. We furthermore compare theoretical results to experimental measurements and find that the presence of Cu-hydroxy dimers and Cu monomers could potentially explain the experimentally observed UV-vis-NIR spectra.  more » « less
Award ID(s):
1800284
NSF-PAR ID:
10354307
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
12
Issue:
9
ISSN:
2044-4753
Page Range / eLocation ID:
2744 to 2748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The speciation and structure of Cu ions and complexes in chabazite (SSZ-13) zeolites, which are relevant catalysts for nitrogen oxide reduction and partial methane oxidation, depend on material composition and reaction environment. Ultraviolet-visible (UV-Vis) spectra of Cu-SSZ-13 zeolites synthesized to contain specific Cu site motifs, together with ab initio molecular dynamics and time-dependent density functional theory calculations, were used to test the ability to relate specific spectroscopic signatures to specific site motifs. Geometrically distinct arrangements of two framework Al atoms in six-membered rings are found to exchange Cu 2+ ions that become spectroscopically indistinguishable after accounting for the finite-temperature fluctuations of the Cu coordination environment. Nominally homogeneous single Al exchange sites are found to exchange a heterogeneous mixture of [CuOH] + monomers, O- and OH-bridged Cu dimers, and larger polynuclear complexes. The UV-Vis spectra of the latter are sensitive to framework Al proximity, to precise ligand environment, and to finite-temperature structural fluctuations, precluding the precise assignment of spectroscopic features to specific Cu structures. In all Cu-SSZ-13 samples, these dimers and larger complexes are reduced by CO to Cu + sites at 523 K, leaving behind isolated [CuOH] + sites with a characteristic spectroscopic identity. The various mononuclear and polynuclear Cu 2+ species are distinguishable by their different responses to reducing environments, with implications for their relevance to catalytic redox reactions. 
    more » « less
  2. Abstract

    Exciton-coupled chromophore dimers are an emerging class of optical probes for studies of site-specific biomolecular interactions. Applying accurate theoretical models for the electrostatic coupling of a molecular dimer probe is a key step for simulating its optical properties and analyzing spectroscopic data. In this work, we compare experimental absorbance and circular dichroism (CD) spectra of ‘internally-labeled’ (iCy3)2 dimer probes inserted site-specifically into DNA fork constructs to theoretical calculations of the structure and geometry of these exciton-coupled dimers. We compare transition density models of varying levels of approximation to determine conformational parameters of the (iCy3)2 dimer-labeled DNA fork constructs. By applying an atomistically detailed transition charge (TQ) model, we can distinguish between dimer conformations in which the stacking and tilt angles between planar iCy3 monomers are varied. A major strength of this approach is that the local conformations of the (iCy3)2 dimer probes that we determined can be used to infer information about the structures of the DNA framework immediately surrounding the probes at various positions within the constructs, both deep in the duplex DNA sequences and at sites at or near the DNA fork junctions where protein complexes bind to discharge their biological functions.

     
    more » « less
  3. We report a green solvent-to-polymer upgrading transformation of chemicals of the lactic acid portfolio into water-soluble lower critical solution temperature (LCST)-type acrylic polymers. Aqueous Cu(0)-mediated living radical polymerization (SET-LRP) was utilized for the rapid synthesis of N -substituted lactamide-type homo and random acrylic copolymers under mild conditions. A particularly unique aspect of this work is that the water-soluble monomers and the SET-LRP initiator used to produce the corresponding polymers were synthesized from biorenewable and non-toxic solvents, namely natural ethyl lactate and BASF's Agnique® AMD 3L ( N , N -dimethyl lactamide, DML). The pre-disproportionation of Cu( i )Br in the presence of tris[2-(dimethylamino)ethyl]amine (Me 6 TREN) in water generated nascent Cu(0) and Cu( ii ) complexes that facilitated the fast polymerization of N -tetrahydrofurfuryl lactamide and N , N -dimethyl lactamide acrylate monomers (THFLA and DMLA, respectively) up to near-quantitative conversion with excellent control over molecular weight (5000 < M n < 83 000) and dispersity (1.05 < Đ < 1.16). Interestingly, poly(THFLA) showed a degree of polymerization and concentration dependent LCST behavior, which can be fine-tuned ( T cp = 12–62 °C) through random copolymerization with the more hydrophilic DMLA monomer. Finally, covalent cross-linking of these polymers resulted in a new family of thermo-responsive hydrogels with excellent biocompatibility and tunable swelling and LCST transition. These illustrate the versatility of these neoteric green polymers in the preparation of smart and biocompatible soft materials. 
    more » « less
  4. Protein adsorption on surfaces greatly impacts many applications such as biomedical materials, anti-biofouling coatings, bio-separation membranes, biosensors, antibody protein drugs etc. For example, protein drug adsorption on the widely used lubricant silicone oil surface may induce protein aggregation and thus affect the protein drug efficacy. It is therefore important to investigate the molecular behavior of proteins at the silicone oil/solution interface. Such an interfacial study is challenging because the targeted interface is buried. By using sum frequency generation vibrational spectroscopy (SFG) with Hamiltonian local mode approximation method analysis, we studied protein adsorption at the silicone oil/protein solution interface in situ in real time, using bovine serum albumin (BSA) as a model. The results showed that the interface was mainly covered by BSA dimers. The deduced BSA dimer orientation on the silicone oil surface from the SFG study can be explained by the surface distribution of certain amino acids. To confirm the BSA dimer adsorption, we treated adsorbed BSA dimer molecules with dithiothreitol (DTT) to dissociate these dimers. SFG studies on adsorbed BSA after the DTT treatment indicated that the silicone oil surface is covered by BSA dimers and BSA monomers in an approximate 6 : 4 ratio. That is to say, about 25% of the adsorbed BSA dimers were converted to monomers after the DTT treatment. Extensive research has been reported in the literature to determine adsorbed protein dimer formation using ex situ experiments, e.g. , by washing off the adsorbed proteins from the surface then analyzing the washed-off proteins, which may induce substantial errors in the washing process. Dimerization is a crucial initial step for protein aggregation. This research developed a new methodology to investigate protein aggregation at a solid/liquid (or liquid/liquid) interface in situ in real time using BSA dimer as an example, which will greatly impact many research fields and applications involving interfacial biological molecules. 
    more » « less
  5. null (Ed.)
    Phosphinodiboranates (H 3 BPR 2 BH 3 − ) are a class of borohydrides that have merited a reputation as weakly coordinating anions, which is attributed in part to the dearth of coordination complexes known with transition metals, lanthanides, and actinides. We recently reported how K(H 3 BP t Bu 2 BH 3 ) exhibits sluggish salt elimination reactivity with f-metal halides in organic solvents such as Et 2 O and THF. Here we report how this reactivity appears to be further attenuated in solution when the t Bu groups attached to phosphorus are exchanged for R = Ph or H, and we describe how mechanochemistry was used to overcome limited solution reactivity with K(H 3 BPPh 2 BH 3 ). Grinding three equivalents of K(H 3 BPPh 2 BH 3 ) with UI 3 (THF) 4 or LnI 3 (Ln = Ce, Pr, Nd) allowed homoleptic complexes with the empirical formulas U(H 3 BPPh 2 BH 3 ) 3 (1), Ce(H 3 BPPh 2 BH 3 ) 3 (2), Pr(H 3 BPPh 2 BH 3 ) 3 (3), and Nd(H 3 BPPh 2 BH 3 ) 3 (4) to be prepared and subsequently crystallized in good yields (50–80%). Single-crystal XRD studies revealed that all four complexes exist as dimers or coordination polymers in the solid-state, whereas 1 H and 11 B NMR spectra showed that they exist as a mixture of monomers and dimers in solution. Treating 4 with THF breaks up the dimer to yield the monomeric complex Nd(H 3 BPPh 2 BH 3 ) 3 (THF) 3 (4-THF). XRD studies revealed that 4-THF has one chelating and two dangling H 3 BPPh 2 BH 3 − ligands bound to the metal to accommodate binding of THF. In contrast to the results with K(H 3 BPPh 2 BH 3 ), attempting the same mechanochemical reactions with Na(H 3 BPH 2 BH 3 ) containing the simplest phosphinodiboranate were unsuccessful; only the partial metathesis product U(H 3 BPH 2 BH 3 )I 2 (THF) 3 (5) was isolated in poor yields. Despite these limitations, our results offer new examples showing how mechanochemistry can be used to rapidly synthesize molecular coordination complexes that are otherwise difficult to prepare using more traditional solution methods. 
    more » « less