skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FliL and its paralog MotF have distinct roles in the stator activity of the Sinorhizobium meliloti flagellar motor
The bacterial flagellum is a complex macromolecular machine that drives bacteria through diverse fluid environments. Although many components of the flagellar motor are conserved across species, the roles of FliL are numerous and species-specific. Here, we have characterized an additional player required for flagellar motor function in Sinorhizobium meliloti, MotF, which we have identified as a FliL paralog. We performed a comparative analysis of MotF and FliL, identified interaction partners through bacterial two-hybrid and pull-down assays, and investigated their roles in motility and motor rotation. Both proteins form homooligomers, and interact with each other, and with the stator proteins MotA and MotB. The ∆motF mutant exhibits normal flagellation but its swimming behavior and flagellar motor activity are severely impaired and erratic. In contrast, the ∆fliL mutant is mostly aflagellate and nonmotile. Amino acid substitutions in cytoplasmic regions of MotA or disruption of the proton channel plug of MotB partially restored motor activity to the ∆motF but not the ∆fliL mutant. Altogether, our findings indicate that both, MotF and FliL, are essential for flagellar motor torque generation in S. meliloti. FliL may serve as a scaffold for stator integration into the motor, and MotF is required for proton channel modulation.  more » « less
Award ID(s):
2128232 1817652
PAR ID:
10354446
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Molecular Microbiology
ISSN:
0950-382X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha‐proteobacteriumSinorhizobium melilotiis nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtRmutant can be restored by secondary mutations in the motility genemotAor a previously uncharacterized gene in the flagellar regulon, which we namedmotS. MotS is not essential forS. melilotimotility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N‐terminal transmembrane segment, a long‐disordered region, and a conserved β‐sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12Salso restored the ΔldtRmotility defect. The MotAG12Svariant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild‐type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12Smight stabilize its interaction with altered peptidoglycan. 
    more » « less
  2. ABSTRACT Symbiotic nitrogen fixation (SNF) in the interaction between the soil bacteria Sinorhizobium meliloti and legume plant Medicago sativa is carried out in specialized root organs called nodules. During nodule development, each symbiont must drastically alter their proteins, transcripts, and metabolites in order to support nitrogen fixation. Moreover, bacteria within the nodules are under stress, including challenges by plant antimicrobial peptides, low pH, limited oxygen availability, and strongly reducing conditions, all of which challenge proteome integrity. S. meliloti stress adaptation, proteome remodeling, and quality control are controlled in part by the large oligomeric protease complexes HslUV and ClpXP1. To improve understanding of the roles of S. meliloti HslUV and ClpXP1 under free-living conditions and in symbiosis with M. sativa , we generated Δ hslU , Δ hslV , Δ hslUV , and Δ clpP1 knockout mutants. The shoot dry weight of M. sativa plants inoculated with each deletion mutant was significantly reduced, suggesting a role in symbiosis. Further, slower free-living growth of the Δ hslUV and Δ clpP1 mutants suggests that HslUV and ClpP1 were involved in adapting to heat stress, the while Δ hslU and Δ clpP1 mutants were sensitive to kanamycin. All deletion mutants produced less exopolysaccharide and succinoglycan, as shown by replicate spot plating and calcofluor binding. We also generated endogenous C-terminal enhanced green fluorescent protein (eGFP) fusions to HslU, HslV, ClpX, and ClpP1 in S. meliloti . Using anti-eGFP antibodies, native coimmunoprecipitation experiments with proteins from free-living and nodule tissues were performed and analyzed by mass spectrometry. The results suggest that HslUV and ClpXP were closely associated with ribosomal and proteome quality control proteins, and they identified several novel putative protein-protein interactions. IMPORTANCE Symbiotic nitrogen fixation (SNF) is the primary means by which biologically available nitrogen enters the biosphere, and it is therefore a critical component of the global nitrogen cycle and modern agriculture. SNF is the result of highly coordinated interactions between legume plants and soil bacteria collectively referred to as rhizobia, e.g., Medicago sativa and S. meliloti , respectively. Accomplishing SNF requires significant proteome changes in both organisms to create a microaerobic environment suitable for high-level bacterial nitrogenase activity. The bacterial protease systems HslUV and ClpXP are important in proteome quality control, in metabolic remodeling, and in adapting to stress. This work shows that S. meliloti HslUV and ClpXP are involved in SNF, in exopolysaccharide production, and in free-living stress adaptation. 
    more » « less
  3. Chemotaxis systems enable microbes to sense their immediate environment, moving towards beneficial stimuli and away from those that are harmful. In an effort to better understand the chemotaxis system of Sinorhizobium meliloti , a symbiont of the legume alfalfa, the cellular stoichiometries of all ten chemotaxis proteins in S. meliloti were determined. A combination of quantitative immunoblot and mass spectrometry revealed that the protein stoichiometries in S. meliloti varied greatly from those in Escherichia coli and Bacillus subtilis . To compare protein ratios to other systems, values were normalized to the central kinase CheA. All S. meliloti chemotaxis proteins exhibited increased ratios to varying degrees. The ten-fold higher molar ratio of adaptor proteins CheW1 and CheW2 to CheA might result in the formation of rings in the chemotaxis array that only consist of CheW instead of CheA and CheW in a 1:1 ratio. We hypothesize that the higher ratio of CheA to the main response regulator CheY2 is a consequence of the speed-variable motor in S. meliloti , instead of a switch-type motor. Similarly, proteins involved in signal termination are far more abundant in S. meliloti , which utilizes a phosphate-sink mechanism based on CheA retro-phosphorylation to inactivate the motor response regulator versus CheZ-catalyzed dephosphorylation as in E. coli and B. subtilis . Finally, the abundance of CheB and CheR, which regulate chemoreceptor methylation, was increased when compared to CheA, indicative of variations in the adaptation system of S. meliloti . Collectively, these results mark significant differences in the composition of bacterial chemotaxis systems. IMPORTANCE The symbiotic soil bacterium Sinorhizobium meliloti contributes greatly to host-plant growth by fixing atmospheric nitrogen. The provision of nitrogen as ammonium by S. meliloti leads to increased biomass production of its legume host alfalfa and diminishes the use of environmentally harmful chemical fertilizers. To better understand the role of chemotaxis in host-microbe interaction, a comprehensive catalogue of the bacterial chemotaxis system is vital, including its composition, function, and regulation. The stoichiometry of chemotaxis proteins in S. meliloti has very few similarities to the systems in E. coli and B. subtilis . In addition, total amounts of proteins are significantly lower. S. meliloti exhibits a chemotaxis system distinct from known models by incorporating new proteins as exemplified by the phosphate sink mechanism. 
    more » « less
  4. Plants have evolved the ability to distinguish between symbiotic and pathogenic microbial signals. However, potentially cooperative plant–microbe interactions often abort due to incompatible signaling. The Nodulation Specificity 1 ( NS1 ) locus in the legume Medicago truncatula blocks tissue invasion and root nodule induction by many strains of the nitrogen-fixing symbiont Sinorhizobium meliloti . Controlling this strain-specific nodulation blockade are two genes at the NS1 locus, designated NS1a and NS1b , which encode malectin-like leucine-rich repeat receptor kinases. Expression of NS1a and NS1b is induced upon inoculation by both compatible and incompatible Sinorhizobium strains and is dependent on host perception of bacterial nodulation (Nod) factors. Both presence/absence and sequence polymorphisms of the paired receptors contribute to the evolution and functional diversification of the NS1 locus. A bacterial gene, designated rns1 , is required for activation of NS1 -mediated nodulation restriction. rns1 encodes a type I-secreted protein and is present in approximately 50% of the nearly 250 sequenced S. meliloti strains but not found in over 60 sequenced strains from the closely related species Sinorhizobium medicae . S. meliloti strains lacking functional rns1 are able to evade NS1 -mediated nodulation blockade. 
    more » « less
  5. Stabb, Eric V. (Ed.)
    ABSTRACT Some soil bacteria, called rhizobia, can interact symbiotically with legumes, in which they form nodules on the plant roots, where they can reduce atmospheric dinitrogen to ammonia, a form of nitrogen that can be used by growing plants. Rhizobium-plant combinations can differ in how successful this symbiosis is: for example, Sinorhizobium meliloti Rm1021 forms a relatively ineffective symbiosis with Medicago truncatula Jemalong A17, but Sinorhizobium medicae WSM419 is able to support more vigorous plant growth. Using proteomic data from free-living and symbiotic S. medicae WSM419, we previously identified a subset of proteins that were not closely related to any S. meliloti Rm1021 proteins and speculated that adding one or more of these proteins to S. meliloti Rm1021 would increase its effectiveness on M. truncatula A17. Three genes, Smed_3503, Smed_5985, and Smed_6456, were cloned into S. meliloti Rm1021 downstream of the E. coli lacZ promoter. Strains with these genes increased nodulation and improved plant growth, individually and in combination with one another. Smed_3503, renamed iseA ( i ncreased s ymbiotic e ffectiveness), had the largest impact, increasing M. truncatula biomass by 61%. iseA homologs were present in all currently sequenced S. medicae strains but were infrequent in other Sinorhizobium isolates. Rhizobium leguminosarum bv. viciae 3841 containing iseA led to more nodules on pea and lentil. Split-root experiments with M. truncatula A17 indicated that S. meliloti Rm1021 carrying the S. medicae iseA is less sensitive to plant-induced resistance to rhizobial infection, suggesting an interaction with the plant’s regulation of nodule formation. IMPORTANCE Legume symbiosis with rhizobia is highly specific. Rhizobia that can nodulate and fix nitrogen on one legume species are often unable to associate with a different species. The interaction can be more subtle. Symbiotically enhanced growth of the host plant can differ substantially when nodules are formed by different rhizobial isolates of a species, much like disease severity can differ when conspecific isolates of pathogenic bacteria infect different cultivars. Much is known about bacterial genes essential for a productive symbiosis, but less is understood about genes that marginally improve performance. We used a proteomic strategy to identify Sinorhizobium genes that contribute to plant growth differences that are seen when two different strains nodulate M. truncatula A17. These genes could also alter the symbiosis between R. leguminosarum bv. viciae 3841 and pea or lentil, suggesting that this approach identifies new genes that may more generally contribute to symbiotic productivity. 
    more » « less