skip to main content


Title: An Interplay of Problem-Solving Modes and Authority: Framework for Equitable Collaboration in Undergraduate Physics Labs,
Abstract: We use the Adaptor-Innovator Theory and the Influence framework to interpret undergraduate physics laboratory students’ approaches to – and bids for – intellectual and directive authority. Students display behaviors that utilize structure and work within a defined system (adaptor) and, separately, behaviors that work outside the system (innovator), the latter often by engaging directly with equipment. Adaptors exhibit high authority by asserting experimental understanding, whereas innovators are attributed with high authority through their frequent, direct handling of the equipment. We interpret equitable collaborations as those in which students 1) have full access to the experimental or conversational floor adaptively or innovatively while being 2) acknowledged in their authority by their group.  more » « less
Award ID(s):
1757477
NSF-PAR ID:
10354517
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 15th International Conference of the Learning Sciences-ICLS 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: We use the Adaptor-Innovator Theory and the Influence framework to interpret undergraduate physics laboratory students’ approaches to – and bids for – intellectual and directive authority. Students display behaviors that utilize structure and work within a defined system (adaptor) and, separately, behaviors that work outside the system (innovator), the latter often by engaging directly with equipment. Adaptors exhibit high authority by asserting experimental understanding, whereas innovators are attributed with high authority through their frequent, direct handling of the equipment. We interpret equitable collaborations as those in which students 1) have full access to the experimental or conversational floor adaptively or innovatively while being 2) acknowledged in their authority by their group. 
    more » « less
  2. Measurements in quantum mechanics are often taught in an abstract, theoretical context. Compared to what is known about student understanding of experimental data in classical mechanics, it is unclear how students think about measurement and uncertainty in the context of experimental data from quantum mechanical systems. In this paper, we tested how students interpret the variability in data from hypothetical experiments in classical and quantum mechanics. We conducted semi-structured interviews with 20 students who had taken quantum mechanics courses and analyzed to which sources they attribute variability in the data. We found that in the quantum mechanics context, most students interpret any variability in the data as irreducible and inherent to the theory. While acknowledging the influence of experimenter error, limited resolution of measurement equipment, and confounding variables (like air resistance) in classical mechanics, many students did not recognize the influence of such effects in quantum mechanics. Some students expressed the view that there are inherently fewer confounding variables in Quantum Mechanics and the equipment used is more precise. We derive tentative implications for instruction and propose further research to test the influence of framing on the responses to our interview protocol. 
    more » « less
  3. Graphical representations are ubiquitous in the learning and teaching of science, technology, engineering, and mathematics (STEM). However, these materials are often not accessible to the over 547,000 students in the United States with blindness and significant visual impairment, creating barriers to pursuing STEM educational and career pathways. Furthermore, even when such materials are made available to visually impaired students, access is likely through literalized modes (e.g., braille, verbal description), which is problematic as these approaches (1) do not directly convey spatial information and (2) are different from the graphic-based materials used by students without visual impairment. The purpose of this study was to design and evaluate a universally accessible system for communicating graphical representations in STEM classes. By combining a multisensory vibro-audio interface and an app running on consumer mobile hardware, the system is meant to work equally well for all students, irrespective of their visual status. We report the design of the experimental system and the results of an experiment where we compared learning performance with the system to traditional (visual or tactile) diagrams for sighted participants (n = 20) and visually impaired participants (n =9) respectively. While the experimental multimodal diagrammatic system (MDS) did result in significant learning gains for both groups of participants, the results also revealed no statistically significant differences in the capacity for learning from graphical information across both comparison groups. Likewise, there were no statistically significant differences in the capacity for learning from graphical information between the stimuli presented through the experimental system and the traditional (visual or tactile) diagram control conditions, across either participant group. These findings suggest that both groups were able to learn graphical information from the experimental system as well as traditional diagram presentation materials. This learning modality was supported without the need for conversion of the diagrams to make them accessible for participants who required tactile materials. The system also provided additional multisensory information for sighted participants to interpret and answer questions about the diagrams. Findings are interpreted in terms of new universal design principles for producing multisensory graphical representations that would be accessible to all learners.

     
    more » « less
  4. Abstract

    The physical properties of minerals are modified by the high temperatures of volcanic lightning during explosive eruptions. Alteration involves rapid heating and volatilization, melting, and fusion of ash grains within the discharge channel, followed by rapid quenching into new glassy textures. High current impulse experiments reveal that lightning alters not only the morphology and mineralogy of volcanic ash but also its magnetic properties. We investigate lightning‐induced magnetic changes in five igneous minerals (<32 μm powders of albite, labradorite, augite, hornblende, and magnetite) by comparing hysteresis parameters before and after impulse experiments conducted at peak currents of 25 and 40 kA. Both the paramagnetic and ferrimagnetic behaviors of the samples were altered, which we interpret as a superposition of two processes. (a) Rapid melting allows iron contained within inclusions of Fe‐oxides and Fe‐bearing silicates to diffuse into the newly formed melt, thereby increasing the paramagnetism of the resulting glass. (b) Nucleation and growth of magnetite from the newly formed melt increases the ferrimagnetic behavior of the post‐experimental samples. Nominally non‐Fe‐bearing silicates like albite and labradorite have significantly increased paramagnetism and ferrimagnetism. Fe‐bearing silicates like augite and hornblende contain higher concentrations of ferrimagnetic inclusions, from which Fe diffuses into the newly formed melt, thereby increasing paramagnetism while decreasing ferrimagnetism. Experiments conducted on magnetite produced new magnetite crystals with dendritic habits. Although specific to volcanic ash, these results provide important insights into the magnetism of other materials affected by lightning on Earth, the Moon, and throughout the solar system.

     
    more » « less
  5. Participatory research methods are increasingly used to collectively understand complex social-environmental problems and to design solutions through diverse and inclusive stakeholder engagement. But participatory research rarely engages stakeholders to co-develop and co-interpret models that conceptualize and quantify system dynamics for comparing scenarios of alternate action. Even fewer participatory projects have engaged people using geospatial simulations of dynamic landscape processes and spatially explicit planning scenarios. We contend that geospatial participatory modeling (GPM) can confer multiple benefits over non-spatial approaches for participatory research processes, by (a) personalizing connections to problems and their solutions through visualizations of place, (b) resolving abstract notions of landscape connectivity, and (c) clarifying the spatial scales of drivers, data, and decision-making authority. We illustrate through a case study how GPM is bringing stakeholders together to balance population growth and conservation in a coastal region facing dramatic landscape change due to urbanization and sea level rise. We find that an adaptive, iterative process of model development, sharing, and revision drive innovation of methods and ultimately improve the realism of land change models. This co-production of knowledge enables all participants to fully understand problems, evaluate the acceptability of trade-offs, and build buy-in for management actions in the places where they live and work. 
    more » « less