Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bitzenbauer, Philipp (Ed.)Graduation rates are a key measure of the long-term efficacy of academic interventions. However, challenges to using traditional estimates of graduation rates for underrepresented students include inherently small sample sizes and high data requirements. Here, we show that a Markov model increases confidence and reduces biases in estimated graduation rates for underrepresented minority and first-generation students. We use a Learning Assistant program to demonstrate the Markov model’s strength for assessing program efficacy. We find that Learning Assistants in gateway science courses are associated with a 9% increase in the six-year graduation rate. These gains are larger for underrepresented minority (21%) and first-generation students (18%). Our results indicate that Learning Assistants can improve overall graduation rates and address inequalities in graduation rates for underrepresented students.more » « less
-
Visual literacy, which is the ability to effectively identify, interpret, evaluate, use, and create images and visual media, is an important aspect of science literacy. As molecular processes are not directly observable, researchers and educators rely on visual representations (e.g., drawings) to communicate ideas in biology.more » « less
-
Offerdahl, Erika (Ed.)Concepts of molecular biology and genetics are difficult for many biology undergraduate students to master yet are crucial for deep understanding of how life works. By asking students to draw their ideas, we attempted to uncover the mental models about genes and gene expression held by biology students ( n = 23) and experts ( n = 18) using semistructured interviews. A large divide was identified between novice and expert conceptions. While experts typically drew box-and-line representations and thought about genes as regions of DNA that were used to encode products, students typically drew whole chromosomes rather than focusing on gene structure and conflated gene expression with simple phenotypic outcomes. Experts universally described gene expression as a set of molecular processes involving transcription and translation, whereas students often associated gene expression with Punnett squares and phenotypic outcomes. Follow-up survey data containing a ranking question confirmed students’ alignment of their mental models with the images uncovered during interviews ( n = 156 undergraduate biology students) and indicated that Advanced students demonstrate a shift toward expert-like thinking. An analysis of 14 commonly used biology textbooks did not show any relationship between Punnett squares and discussions of gene expression, so it is doubtful students’ ideas originate directly from textbook reading assignments. Our findings add to the literature about mechanistic reasoning abilities of learners and provide new insights into how biology students think about genes and gene expression.more » « less
-
Abstract: We use the Adaptor-Innovator Theory and the Influence framework to interpret undergraduate physics laboratory students’ approaches to – and bids for – intellectual and directive authority. Students display behaviors that utilize structure and work within a defined system (adaptor) and, separately, behaviors that work outside the system (innovator), the latter often by engaging directly with equipment. Adaptors exhibit high authority by asserting experimental understanding, whereas innovators are attributed with high authority through their frequent, direct handling of the equipment. We interpret equitable collaborations as those in which students 1) have full access to the experimental or conversational floor adaptively or innovatively while being 2) acknowledged in their authority by their group.more » « less
-
Abstract: We use the Adaptor-Innovator Theory and the Influence framework to interpret undergraduate physics laboratory students’ approaches to – and bids for – intellectual and directive authority. Students display behaviors that utilize structure and work within a defined system (adaptor) and, separately, behaviors that work outside the system (innovator), the latter often by engaging directly with equipment. Adaptors exhibit high authority by asserting experimental understanding, whereas innovators are attributed with high authority through their frequent, direct handling of the equipment. We interpret equitable collaborations as those in which students 1) have full access to the experimental or conversational floor adaptively or innovatively while being 2) acknowledged in their authority by their group.more » « less
An official website of the United States government

Full Text Available