skip to main content

This content will become publicly available on January 1, 2023

Title: Eco-STEM: Transforming STEM Education using an Assetbased Ecosystem Model
A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ] to enhance more » the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation. « less
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
2022 ASEE Annual Conference & Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. We STEM educators often hear that so many of our students fail because they are not college ready. But interventions at various levels, despite the hard work of implementation, have not resulted in dramatic improvements. What if, instead, the problem is that the institutional system – including instructional approaches and policies – is not student ready? The goal of our NSF supported project, called “Eco-STEM,” is to establish a healthy STEM educational ecosystem that allows all individuals within the ecosystem to thrive. The context for our work on STEM educational ecosystems is a Very High Hispanic Enrolling Hispanic-Serving Institution (HSI) at California State University, Los Angeles, where the majority of our students are also low-income and first-generation college students. Guided by an ecosystem paradigm, the project aims to: 1) create a supportive and culturally responsive learning/working environment for both students and faculty; 2) make teaching and learning rewarding and fulfilling experiences; and 3) emphasize the assets of our community to enhance motivation, excellence, and success. Currently, many STEM educators have a mental model of the education system as a pipeline or pathway, and this factory-like model requires standard inputs, expecting students to come prepared with certain knowledge and skills [4].more »When the educational system is viewed as a factory assembly line (as shown in Figure 1), interventions are focused on fixing the inputs by trying to increase students’ preparedness, which contributes to a prevailing deficit-focused mindset. This not only hinders student growth but also makes educational institutions less inclusive and teaching less rewarding for faculty. Increasingly, equity-minded educators and researchers employing the framework of community cultural wealth suggest that we need an asset-based mindset if we are to help all students achieve success in STEM. Research on ecosystem models offers a new way of thinking. In contrast to pipelines or pathways, which focus on student outcomes, an ecosystem model is centered on the learning environment, communities, and the experiences that diverse students, faculty, and staff have in the system as active agents. The Eco-STEM project proposes to: 1) shift the mental models of STEM faculty from factory- based to ecosystem-based so that they will intentionally establish healthy classroom ecosystems that facilitate learning for all students regardless of their backgrounds; 2) change the mental models and develop the capacity of department chairs and program coordinators so they can lead the cultural changes needed to create a healthy ecosystem at the department level; and 3) revise the teaching evaluation system to promote faculty development and enhance the student experience, which will help to create a healthy ecosystem at the institution. One fundamental aspect of this project is the Eco-STEM Faculty Fellows Community of Practice (CoP), which is designed to help foster these changes. As a work-in-progress paper, this paper presents the design and structure of the Eco-STEM Faculty Fellows CoP and seeks input from the faculty development community on our approach to fostering a healthy educational ecosystem for the majority marginalized student population we serve.« less
  2. This work-in-progress research paper introduces the Educational Ecosystem Health Survey (EEHS), an educational survey instrument designed by the Eco-STEM team at California State University, Los Angeles, a federally designated Hispanic Serving Institution. The Eco-STEM project applies a framework of Community Cultural Wealth and explores the metaphor of a healthy ecosystem to envision systemic change that responds to the needs and values the assets of diverse actors, who learn together for both their individual and collective good, within the educational “ecosystem.” As part of the project, the Eco-STEM team has developed the EEHS survey instrument to measure the “health” of the educational ecosystem. The results will provide valuable insight into the perceptions and experiences of students from socially and structurally oppressed groups. The Eco-STEM EEHS is comprised of constructs from several survey instruments that have already undergone statistical validation within educational contexts, many of them within higher education. The items peruse issues of social climate, belonging, thriving and wellbeing, interest, mindfulness, stress, and perceptions of the future. Given the Community Cultural Wealth framework and the fact that two-thirds of the student body at California State University, Los Angeles identifies as Hispanic, the EEHS is offered in both Spanish and English. Studentsmore »are asked to provide a multitude of institutionally relevant demographic information, such that results may be disaggregated along many categories. The EEHS is also administered to faculty, staff, and administration / management in addition to students. By including these essential actors in the analysis of the state of the educational ecosystem, we intend to also measure perceptions of experience serving the STEM educational community, rather than solely receiving it. We will pilot the EEHS during the Spring 2022 semester. Over the next four years of the Eco- STEM project, semesterly administrations will quantify the progress of the project’s initiatives to implement effective systemic change. Our analyses will investigate the perspectives of those with oppressed social identities – individuals who actually hold majority representation within the unique demographic composition of California State University, Los Angeles. The results will offer critically important feedback to Hispanic-Serving Institutions and all institutions who strive to serve students from communities who have been left behind and even exploited by the existing systems and structures of higher education. Keywords: Educational Ecosystems, Community Cultural Wealth, Surveys« less
  3. Recognizing the need to attract and retain the most talented individuals to STEM professions, the National Academies advocate that diversity in STEM must be a national priority. To build a diverse workforce, educators within engineering must continue working to create an inclusive environment to prevent historically underrepresented students from leaving the field. Additionally, previous research provides compelling evidence that diversity among students and faculty is crucially important to the intellectual and social development of all students, and failure to create an inclusive environment for minority students negatively affects both minority and majority students. The dearth of research on the experiences of LGBTQ individuals in engineering is a direct barrier to improving the climate for LGBTQ in our classrooms, departments and profession. Recent studies show that engineering can be a “chilly climate” for LGBTQ individuals where “passing and covering” demands are imposed by a hetero/cis-normative culture within the profession. The unwelcoming climate for LGBTQ individuals in engineering may be a key reason that they are more likely than non-LGBTQ peers to leave engineering. This project builds on the success of a previous exploratory project entitled Promoting LGBTQ Equality in Engineering through Virtual Communities of Practice (VCP), hosted by ASEE (EEC 1539140).more »This project will support engineering departments’ efforts to create LGBTQ-inclusive environments using knowledge generated from the original grant. Our research focuses on understanding how Community of Practice (COP) characteristics develop among STEM faculty who work to increase LGBTQ inclusion; how STEM faculty as part of the VCP develop a change agent identity, and what strategies are effective in reshaping norms and creating LGBTQ-inclusive STEM departments. Therefore, our guiding research question is: How does a Virtual Community of Practice of STEM faculty develop from a group committed to improving the culture for the LGBTQ community? To answer our research question, we designed a qualitative Interpretive Phenomenological Analysis (IPA) study based on in-depth individual interviews. Our study participants are STEM faculty across all ranks and departments. Our sample includes 16 STEM faculty participants. After consulting with IPA experts to establish face validation, we piloted the interview protocol with three experienced qualitative researchers. The focus of this paper presents the results of the pilot study and preliminary themes from a sample of the 16 individual interviews. Most participants discussed the supportive and affirming nature of the community. Interestingly, the supportive culture of the virtual community led to members to translate support to LGBTQ students or colleagues at their home institution. Additionally, the participants spoke in detail about how the group supported their identity development as an educator and as a professional (e.g. engineering identity) in addition to seeking opportunities to combine their advocacy work with their research. Therefore, the supportive culture and safe space to negotiate identity development allows the current VCP to develop. Future work of the group will translate the research findings into practice through the iterative refinement of the community’s advocacy and education efforts including the Safe Zone workshops.« less
  4. The NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-seven new and continuing students were recruited into interdisciplinary cohorts that are being nurtured and developed in a community characterized by extensive peer and faculty mentoring, vertically integrated Project Based Learning (PBL), and undergraduate research experiences. The SPIRIT Scholar program attracted a diverse group of Engineering and Engineering Technology students, thus increasing the percentage of female and minority student participation as compared to the host department program demographics. Over the last academic year, fifty-four undergraduate research projects/activities were conducted by the twenty-seven scholars under the direction of twelve faculty fellows. Additionally, peer-to-peer mentorship and student leadership were developed through the program’s vertically integrated PBL model, which incorporated four courses and seven small-group design projects. Academic and professional support for the student scholars were administered through collaborations with several offices at the host institution, including an industry-engaged product development center. The program participants reported strong benefits from engaging in the program activities during the first year. Specifically, this paper presents resultsmore »from the program activities, including: cohort recruitment and demographics; support services; undergraduate research; vertically integrated PBL activities; and the external review of the program. Similar programs may benefit from the findings and the external review report, which contained several accolades as well as suggestions for potential continuous improvement.« less
  5. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire ofmore »strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less