skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Closed, Circular Genome Sequence of Aureococcus anophagefferens Virus, a Lytic Virus of a Brown Tide-Forming Alga
ABSTRACT. Here, we report the genomic sequence of Aureococcus anophagefferens virus, assembled into one circular contig from both Nanopore and Illumina reads. The genome is 381,717 bp long with a GC content of 29.1%, which includes an additional 5-kb region between the previously predicted polar ends of the reference genome.  more » « less
Award ID(s):
1922958
PAR ID:
10354647
Author(s) / Creator(s):
; ;
Editor(s):
Dennehy, John J.
Publisher / Repository:
ASM Press
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
11
Issue:
7
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The complete genome of a new umbra-like virus from edible fig (Ficus carica) was identified by high-throughput sequencing. Based on its similarity to umbra-like virus genome sequences available in GenBank, the proposed name of this new virus is "fig umbra-like virus" (FULV). The genome of full-length FULV-1 consists of 3049 nucleotides organized into three open reading frames (ORFs). Pairwise comparisons showed that the complete nucleotide sequence of the virus had the highest identity (71.3%) to citrus yellow vein-associated virus (CYVaV). In addition, phylogenetic trees based on whole-genome nucleotide sequences and amino acid sequences of the RNA-dependent RNA polymerase showed that FULV forms a monophyletic lineage with CYVaV and other umbra-like viruses. Based on the demarcation criteria of the genus Umbravirus, and lack of two umbravirus ORFs, we propose that FULV is a putative new member of the umbra-like virus clade within the family Tombusviridae. 
    more » « less
  2. Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers’ periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume. 
    more » « less
  3. Abstract The parasitoid wasp Venturia canescens is an important biological control agent of stored products moth pests and serves as a model to study the function and evolution of domesticated endogenous viruses (DEVs). The DEVs discovered in V. canescens are known as virus-like particles (VcVLPs), which are produced using nudivirus-derived components and incorporate wasp-derived virulence proteins instead of packaged nucleic acids. Previous studies of virus-derived components in the V. canescens genome identified 53 nudivirus-like genes organized in six gene clusters and several viral pseudogenes, but how VcVLP genes are organized among wasp chromosomes following their integration in the ancestral wasp genome is largely unknown. Here, we present a chromosomal scale genome of V. canescens consisting of 11 chromosomes and 56 unplaced small scaffolds. The genome size is 290.8 Mbp with a N50 scaffold size of 24.99 Mbp. A high-quality gene set including 11,831 protein-coding genes were produced using RNA-Seq data as well as publicly available peptide sequences from related Hymenoptera. A manual annotation of genes of viral origin produced 61 intact and 19 pseudogenized nudivirus-derived genes. The genome assembly revealed that two previously identified clusters were joined into a single cluster and a total of 5 gene clusters comprising of 60 intact nudivirus-derived genes were located in three chromosomes. In contrast, pseudogenes are dispersed among 8 chromosomes with only 4 pseudogenes associated with nudivirus gene clusters. The architecture of genes encoding VcVLP components suggests it originates from a recent virus acquisition and there is a link between the processes of dispersal and pseudogenization. This high-quality genome assembly and annotation represents the first chromosome-scale assembly for parasitoid wasps associated with VLPs, and is publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a valuable resource for future studies of DEVs in parasitoid wasps. 
    more » « less
  4. Ranaviruses (Iridoviridae), including Frog Virus 3 (FV3), are large dsDNA viruses that cause devastating infections globally in amphibians, fish, and reptiles, and contribute to catastrophic amphibian declines. FV3’s large genome (~105 kb) contains at least 98 putative open reading frames (ORFs) as annotated in its reference genome. Previous studies have classified these coding genes into temporal classes as immediate early, delayed early, and late viral transcripts based on their sequential expression during FV3 infection. To establish a high-throughput characterization of ranaviral gene expression at the genome scale, we performed a whole transcriptomic analysis (RNA-Seq) using total RNA samples containing both viral and cellular transcripts from FV3-infected Xenopus laevis adult tissues using two FV3 strains, a wild type (FV3-WT) and an ORF64R-deleted recombinant (FV3-∆64R). In samples from the infected intestine, liver, spleen, lung, and especially kidney, an FV3-targeted transcriptomic analysis mapped reads spanning the full-genome coverage at ~10× depth on both positive and negative strands. By contrast, reads were only mapped to partial genomic regions in samples from the infected thymus, skin, and muscle. Extensive analyses validated the expression of almost all of the 98 annotated ORFs and profiled their differential expression in a tissue-, virus-, and temporal class-dependent manner. Further studies identified several putative ORFs that encode hypothetical proteins containing viral mimicking conserved domains found in host interferon (IFN) regulatory factors (IRFs) and IFN receptors. This study provides the first comprehensive genome-wide viral transcriptome profiling during infection and across multiple amphibian host tissues that will serve as an instrumental reference. Our findings imply that Ranaviruses like FV3 have acquired previously unknown molecular mimics, interfering with host IFN signaling during evolution. 
    more » « less
  5. ABSTRACT Metagenomics is a powerful tool for characterising viruses, with broad applications across diverse disciplines, from understanding the ecology and evolutionary history of viruses to identifying causative agents of emerging outbreaks with unknown aetiology. Additionally, metagenomic data contains valuable information about the amount of virus present within samples. However, we have yet to leverage metagenomics to assess viral load, which is a key epidemiological parameter. To effectively use sequencing outputs to inform transmission, we need to understand the relationship between read depth and viral load across a diverse set of viruses. Here, using target enrichment sequencing, we investigated the detection and recovery of virus genomes by spiking known concentrations of DNA and RNA viruses into wild rodent faecal samples. In total, 15 experimental replicates were sequenced with target enrichment sequencing and compared to shotgun sequencing of the same background samples. Target enriched sequencing recovered all spike-in viruses at every concentration (102, 103, and 105± 1 log genome copies) and showed a log-linear relationship between spike-in concentration and mean read depth. Background viruses (includingKobuvirusandCardiovirus) were recovered consistently across all biological and technical replicates, but genome coverage was variable between virus genera and likely reflected the composition of target enrichment probe panel. Overall, our study highlights the strengths and weaknesses of using commercially available panels to quantify and characterise wildlife viromes, and underscores the importance of probe panel design for accurately interpreting coverage and read depth. To advance the use of metagenomics for understanding virus transmission, further research will be needed to elucidate how sequencing strategy (e.g. library depth, pooling), virome composition, and probe design influence viral read counts and genome coverage. 
    more » « less