Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol−1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ∼ 1100 g mol−1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg∕T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ∼ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon–Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon–Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2–5 orders of magnitude. Complementary measurements of viscosity and chemical composition are desired to further constrain RH-dependent viscosity in future studies.
more »
« less
Experimental Evolution of Methylobacterium: 15 Years of Planned Experiments and Surprise Findings
Experimental evolution has become an increasingly common approach for studying evolutionary phenomena, as well as uncovering physiological connections in a manner complementary to traditional genetics. Here I describe the development of Methylobacterium as a model system for using experimental evolution to study questions at the intersection of metabolism and evolution. Each experiment was initiated to address a particular question inspired by patterns in natural methylotrophs, such as tradeoffs between single-carbon and multi-carbon growth, or the challenges involved in incorporating novel metabolic pathways or genes with poor codon usage that are acquired via horizontal gene transfer. What I could not have appreciated initially, however, was just how many fortuitous surprise findings would emerge. These have ranged from the repeatability of evolution, complex dynamics within populations, epistasis between beneficial mutations, and even the ability to use simple mathematical models to generate testable, quantitative hypotheses about the fitness landscape.
more »
« less
- Award ID(s):
- 1714949
- PAR ID:
- 10354695
- Editor(s):
- Chistoserdova, Ludmila
- Date Published:
- Journal Name:
- Current Issues in Molecular Biology
- Volume:
- 33
- ISSN:
- 1467-3037
- Page Range / eLocation ID:
- 249 to 266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Fracturing in brittle rocks exhibits a significant nonlinear region surrounding the crack tip called the fracture process zone (FPZ). In this study, the evolution of the FPZ under pure mode II loading using notched deep beam under three-point loading was investigated. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique to characterize various crack characteristics such as its type and FPZ evolution in Barre granite specimens. Both displacement and strain approaches of the two-dimensional digital image correlation were used to identify the mode of fracture under pure mode II loading. Both approaches showed that the crack initiation occur under mode I despite the pure mode II loading at the notch tip. The displacement approach was used for characterizing the evolution of the FPZ which analyzed the crack tip opening displacement and crack tip sliding displacement to identify the transition between the three stages of FPZ evolution, namely, (a) elastic stage, (b) formation of the FPZ, and (c) the macro-crack initiation. The results showed that the evolution of the FPZ of mode I fracture under pure mode II loading is similar to cases of pure mode I loading of the same rock.more » « less
-
Incipient soot particles obtained from a series of reactive molecular dynamics simulations were studied to understand the evolution of physical, chemical, and morphological properties of incipient soot. Reactive molecular dynamics simulations of acetylene pyrolysis were performed using ReaxFF potential at 1350, 1500, 1650, and 1800 K. A total of 3324 incipient soot particles were extracted from the simulations at various stages of development. Features such as the number of carbon and hydrogen atoms, number of ring structures, mass, C/H ratio, radius of gyration, surface area, volume, atomic fractal dimension, and density were calculated for each particle. The calculated values of density and C/H ratio matched well with experimental values reported in the literature. Based on the calculated features, the particles were classified in two types: type 1 and type 2 particles. It was found that type 1 particles show significant morphological evolution while type 2 particles undergo chemical restructuring without any significant morphological change. The particle volume was found to be well-correlated with the number of carbon atoms in both type 1 and type 2 particle, whereas surface area was found to be correlated with the number of carbon atoms only for type 1 particles. A correlation matrix comparing the level of correlation between any two features for both type 1 and type 2 particle was created. Finally, based on the calculated statistics, a set of correlations among various physical and morphological parameters of incipient soot was proposed.more » « less
-
Payments for ecosystem services (PES) are a conservation initiative that offer payments to people who own or manage lands that provide desired ecosystem services. Utilizing mixed methods, I examine how PES in the form of government‐issued forestry incentives interact with land tenure to affect carbon storage in Guatemala's Western Highlands. Land tenure is a larger determining factor for carbon storage than payments, as communal forests managed by Indigenous Maya K'iche' communities have significantly higher carbon stocks than private landholdings in these same communities. No statistically significant differences were found in carbon stocks between incentivized and non‐incentivized plots, and participants enrolled only a fraction of their land, likely prioritizing enrollment of degraded plots. These results indicate the importance of using both social and physical science methods to understand the physical outcomes and social context of forest management. I also reflect on why carbon storage is often prioritized, drawing on a critical physical geography framework to analyze carbon accounting methods. Measuring carbon storage gives us the tools to describe the success of communal forest management, yet I also caution relying on the quantification of ecosystem services as a method for landscape valuation and suggest avoiding prioritizing carbon storage and sequestration.more » « less
-
A finite element model consisting of a conducting filament with or without a gap was used to reproduce the behavior of TaOx-based resistive switching devices. The specific goal was to explore the range of possible filament parameters such as filament diameter, composition, gap width, and composition to reproduce the conductance and shape of I–V while keeping the maximum temperature within the acceptable range allowing for ion motion and preventing melting. The model solving heat and charge transport produced a good agreement with experimental data for the oxygen content in the filament below TaO1.3, the filament diameter range between 6 and 22 nm, and the gap oxygen content between TaO1.7 and TaO1.85. Gap width was not limited to either low or high sides according to the criteria considered in this report. The obtained filament composition corresponds to oxygen deficiency an order of magnitude higher than one estimated by other modeling efforts. This was in large part due to the use of recent experimental values of conductivity as a function of composition and temperature. Our modeling results imply that a large fraction of atoms leaves and/or accumulates within the filament to produce a large relative concentration change. This, in turn, necessitates the inclusion of strain energy in the filament formation modeling. In addition, the results reproduce non-linear I–V without the necessity of assuming the Poole–Frenkel type of electrical conduction or the presence of a barrier at the oxide/metal interface.more » « less
An official website of the United States government

