skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The importance of communal forests in carbon storage: Using and destabilizing carbon measurement in understanding Guatemala's payments for ecosystem services
Payments for ecosystem services (PES) are a conservation initiative that offer payments to people who own or manage lands that provide desired ecosystem services. Utilizing mixed methods, I examine how PES in the form of government‐issued forestry incentives interact with land tenure to affect carbon storage in Guatemala's Western Highlands. Land tenure is a larger determining factor for carbon storage than payments, as communal forests managed by Indigenous Maya K'iche' communities have significantly higher carbon stocks than private landholdings in these same communities. No statistically significant differences were found in carbon stocks between incentivized and non‐incentivized plots, and participants enrolled only a fraction of their land, likely prioritizing enrollment of degraded plots. These results indicate the importance of using both social and physical science methods to understand the physical outcomes and social context of forest management. I also reflect on why carbon storage is often prioritized, drawing on a critical physical geography framework to analyze carbon accounting methods. Measuring carbon storage gives us the tools to describe the success of communal forest management, yet I also caution relying on the quantification of ecosystem services as a method for landscape valuation and suggest avoiding prioritizing carbon storage and sequestration.  more » « less
Award ID(s):
1702676
PAR ID:
10375822
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Canadian Geographies / Géographies canadiennes
Volume:
67
Issue:
1
ISSN:
0008-3658
Page Range / eLocation ID:
p. 106-123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bossart, Janice L (Ed.)
    Variation in tropical forest management directly affects biodiversity and provisioning of ecosystem services on a global scale, thus it is necessary to compare forests under different conservation approaches such as protected areas, payments for ecosystem services programs (PES), and ecotourism, as well as forests lacking any formal conservation plan. To examine the effectiveness of specific conservation approaches, we examined differences in forest structure and tree recruitment, including canopy cover; canopy height; seedling, sapling, and adult tree density; and average and total diameter at breast height (DBH) across 78 plots in 18 forests across Costa Rica representing protected areas, private forests utilizing PES and/or ecotourism, and private forests not utilizing these economic incentives. The effectiveness of conservation approaches in providing suitable primate habitat was assessed by conducting broad primate census surveys across a subset of eight forests to determine species richness and group encounter rate of three primate species: mantled howler monkey (Alouatta palliata), Central American spider monkey (Ateles geoffroyi), and the white-faced capuchin monkey (Cebus imitator). Only canopy height was significantly different across the three approaches, with protected areas conserving the tallest and likely oldest forests. Canopy height was also significantly associated with the group encounter rate for both mantled howler and spider monkeys, but not for capuchins. Total group encounter rate for all three monkey species combined was higher in incentivized forests than in protected areas, with capuchin and howler monkey group encounter rates driving the trend. Group encounter rate for spider monkeys was higher in protected areas than in incentivized forests. Incentivized conservation (PES and ecotourism) and protected areas are paragons of land management practices that can lead to variation in forest structure across a landscape, which not only protect primate communities, but support the dietary ecologies of sympatric primate species. 
    more » « less
  2. Abstract Changing global climate and wildfire regimes are threatening forest resilience (i.e., the ability to recover from disturbance). Yet distinguishing areas of “no” versus “slow” postfire forest recovery is challenging, and consequences of sparse tree regeneration for plant communities and carbon dynamics are uncertain. We studied previously forested areas where tree regeneration remained sparse 34 years after the large, stand‐replacing 1988 Yellowstone fires (Wyoming, USA) to ask the following questions: (1) What are the recovery pathways in areas of sparse and reduced forest recovery and how are they distributed across the landscape? (2) What explains variation in postfire tree regeneration density (total and by species) among sparse recovery pathways? (3) What are the implications of sparse recovery for understory plant communities? (4) How diminished are aboveground carbon stocks in areas of sparse postfire forest recovery? Tree densities and species‐specific age distributions, understory plant communities, and carbon stocks were sampled in 55 plots during summer 2022. We detected three qualitatively distinct sparse recovery pathways (persistent sparse or non‐forest, continuous tree infilling, and recent seedling and sapling establishment). Nearly half of the plots appeared “locked in” as persistently sparse or non‐forest, while the remaining may be on a slow path to forest recovery. Plots with nearby upwind seed sources as well as in situ seed pressure from young postfire trees appear likely to recover to forest. Where trees were sparse or absent, plant communities resembled those found in meadows, capturing compositional changes expected to become more common with continued forest loss. However, forest‐affinity species persisted in mesic locations, indicating mismatches between some plant communities and future forest change. Aboveground carbon stocks were low owing to minimal tree reestablishment. Almost all (96%) carbon was stored in coarse wood, a sharp departure from C storage patterns where forests are recovering. If not offset by future tree regeneration, decomposition of dead biomass will protract postfire aboveground carbon stock recovery. As global disturbance regimes and climate continue to change, determining the drivers of ecosystem reorganization and understanding how such changes will cascade to influence ecosystem structure and function will be increasingly important. 
    more » « less
  3. Societal Impact StatementForest ecosystems absorb and store about 25% of global carbon dioxide emissions annually and are increasingly shaped by human land use and management. Climate change interacts with land use and forest dynamics to influence observed carbon stocks and the strength of the land carbon sink. We show that climate change effects on modeled forest land carbon stocks are strongest in tropical wildlands that have limited human influence. Global forest carbon stocks and carbon sink strength may decline as climate change and anthropogenic influences intensify, with wildland tropical forests, especially in Amazonia, likely being especially vulnerable. SummaryHuman effects on ecosystems date back thousands of years, and anthropogenic biomes—anthromes—broadly incorporate the effects of human population density and land use on ecosystems. Forests are integral to the global carbon cycle, containing large biomass carbon stocks, yet their responses to land use and climate change are uncertain but critical to informing climate change mitigation strategies, ecosystem management, and Earth system modeling.Using an anthromes perspective and the site locations from the Global Forest Carbon (ForC) Database, we compare intensively used, cultured, and wildland forest lands in tropical and extratropical regions. We summarize recent past (1900‐present) patterns of land use intensification, and we use a feedback analysis of Earth system models from the Coupled Model Intercomparison Project Phase 6 to estimate the sensitivity of forest carbon stocks to CO2and temperature change for different anthromes among regions.Modeled global forest carbon stock responses are positive for CO2increase but neutral to negative for temperature increase. Across anthromes (intensively used, cultured, and wildland forest areas), modeled forest carbon stock responses of temperate and boreal forests are less variable than those of tropical forests. Tropical wildland forest areas appear especially sensitive to CO2and temperature change, with the negative temperature response highlighting the potential vulnerability of the globally significant carbon stock in tropical forests.The net effect of anthropogenic activities—including land‐use intensification and environmental change and their interactions with natural forest dynamics—will shape future forest carbon stock changes. These interactive effects will likely be strongest in tropical wildlands. 
    more » « less
  4. Spatially explicit global estimates of forest carbon storage are typically coarsely scaled. While useful, these estimates do not account for the variability and distribution of carbon at management scales. We asked how climate, topography, and disturbance regimes interact across and within geopolitical boundaries to influence tree biomass carbon, using the perhumid region of the Pacific Coastal Temperate Rainforest, an infrequently disturbed carbon dense landscape, as a test case. We leveraged permanent sample plots in southeast Alaska and coastal British Columbia and used multiple quantile regression forests and generalized linear models to estimate tree biomass carbon stocks and the effects of topography, climate, and disturbance regimes. We estimate tree biomass carbon stocks are either 211 (SD = 163) Mg C ha−1or 218 (SD = 169) Mg C ha−1. Natural disturbance regimes had no correlation with tree biomass but logging decreased tree biomass carbon and the effect diminished with increasing time since logging. Despite accounting for 0.3% of global forest area, this forest stores between 0.63% and 1.07% of global aboveground forest carbon as aboveground live tree biomass. The disparate impact of logging and natural disturbance regimes on tree biomass carbon suggests a mismatch between current forest management and disturbance history. 
    more » « less
  5. null (Ed.)
    Carbon losses from forest degradation and disturbances are significant and growing sources of emissions in the Brazilian Amazon. Between 2003 and 2019, degradation and disturbance accounted for 44% of forest carbon losses in the region, compared with 56% from deforestation (forest clearing). We found that land tenure played a decisive role in explaining these carbon losses, with Undesignated Public Forests and Other Lands (e.g., private properties) accounting for the majority (82%) of losses during the study period. Illegal deforestation and land grabbing in Undesignated Public Forests widespread and increasingly are important drivers of forest carbon emissions from the region. In contrast, indigenous Territories and Protected Natural Areas had the lowest emissions, demonstrating their effectiveness in preventing deforestation and maintaining carbon stocks. These trends underscore the urgent need to develop reliable systems for monitoring and reporting on carbon losses from forest degradation and disturbance. Together with improved governance, such actions will be crucial for Brazil to reduce pressure on standing forests; strengthen Indigenous land rights; and design effective climate mitigation strategies needed to achieve its national and international climate commitments. 
    more » « less