skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Direct serendipity and mixed finite elements on convex quadrilaterals
Abstract The classical serendipity and mixed finite element spaces suffer from poor approximation on nondegenerate, convex quadrilaterals. In this paper, we develop families of direct serendipity and direct mixed finite element spaces, which achieve optimal approximation properties and have minimal local dimension. The set of local shape functions for either the serendipity or mixed elements contains the full set of scalar or vector polynomials of degree r , respectively, defined directly on each element (i.e., not mapped from a reference element). Because there are not enough degrees of freedom for global $$H^1$$ H 1 or $$H(\text {div})$$ H ( div ) conformity, exactly two supplemental shape functions must be added to each element when $$r\ge 2$$ r ≥ 2 , and only one when $$r=1$$ r = 1 . The specific choice of supplemental functions gives rise to different families of direct elements. These new spaces are related through a de Rham complex. For index $$r\ge 1$$ r ≥ 1 , the new families of serendipity spaces $${\mathscr {DS}}_{r+1}$$ DS r + 1 are the precursors under the curl operator of our direct mixed finite element spaces, which can be constructed to have reduced or full $$H(\text {div})$$ H ( div ) approximation properties. One choice of direct serendipity supplements gives the precursor of the recently introduced Arbogast–Correa spaces (SIAM J Numer Anal 54:3332–3356, 2016. 10.1137/15M1013705 ). Other fully direct serendipity supplements can be defined without the use of mappings from reference elements, and these give rise in turn to fully direct mixed spaces. Our development is constructive, so we are able to give global bases for our spaces. Numerical results are presented to illustrate their properties.  more » « less
Award ID(s):
2111159 1720349 1418752
PAR ID:
10354701
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Numerische Mathematik
Volume:
150
Issue:
4
ISSN:
0029-599X
Page Range / eLocation ID:
929 to 974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. New families of direct serendipity and direct mixed finite elements on general planar, strictly convex polygons were recently defined by the authors. The finite elements of index r are H1 and H(div) conforming, respectively, and approximate optimally to order r+1 while using the minimal number of degrees of freedom. The shape function space consists of the full set of polynomials defined directly on the element and augmented with a space of supplemental functions. The supplemental functions were constructed as rational functions, which can be difficult to integrate accurately using numerical quadrature rules when the index is high. This can result in a loss of accuracy in certain cases. In this work, we propose alternative ways to construct the supplemental functions on the element as continuous piecewise polynomials. One approach results in supplemental functions that are in Hp for any p≥1. We prove the optimal approximation property for these new finite elements. We also perform numerical tests on them, comparing results for the original supplemental functions and the various alternatives. The new piecewise polynomial supplements can be integrated accurately, and therefore show better robustness with respect to the underlying meshes used. 
    more » « less
  2. Abstract

    We construct new families ofdirectserendipity anddirectmixed finite elements on general planar, strictly convex polygons that areH1andH(div) conforming, respectively, and possess optimal order of accuracy for any order. They have a minimal number of degrees of freedom subject to the conformity and accuracy constraints. The name arises because the shape functions are defineddirectlyon the physical elements, i.e., without using a mapping from a reference element. The finite element shape functions are defined to be the full spaces of scalar or vector polynomials plus a space of supplemental functions. The direct serendipity elements are the precursors of the direct mixed elements in a de Rham complex. The convergence properties of the finite elements are shown under a regularity assumption on the shapes of the polygons in the mesh, as well as some mild restrictions on the choices one can make in the construction of the supplemental functions. Numerical experiments on various meshes exhibit the performance of these new families of finite elements.

     
    more » « less
  3. We construct direct serendipity finite elements on general cuboidal hexahedra, which are 𝐻1-conforming and optimally approximate to any order. The new finite elements are direct in that the shape functions are directly defined on the physical element. Moreover, they are serendipity by possessing a minimal number of degrees of freedom satisfying the conformity requirement. Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental functions, where the polynomials are included for the approximation property and supplements are added to achieve 𝐻1 -conformity. The finite elements are fully constructive. The shape function spaces of higher order 𝑟 ≥ 3 are developed first, and then the lower order spaces are constructed as subspaces of the third order space. Under a shape regularity assumption, and a mild restriction on the choice of supplemental functions, we develop the convergence properties of the new direct serendipity finite elements. Numerical results with different choices of supplements are compared on two mesh sequences, one regularly distorted and the other one randomly distorted. They all possess a convergence rate that aligns with the theory, while a slight difference lies in their performance. 
    more » « less
  4. We construct direct serendipity finite elements on general cuboidal hexahedra, which are H1-conforming and optimally approximate to any order. The new finite elements are direct in that the shape functions are directly defined on the physical element. Moreover, they are serendipity by possessing a minimal number of degrees of freedom satisfying the conformity requirement. Their shape function spaces consist of polynomials plus (generally nonpolynomial) supplemental functions, where the polynomials are included for the approximation property and supplements are added to achieve H1-conformity. The finite elements are fully constructive. The shape function spaces of higher order 𝑟 ≥ 3 are developed first, and then the lower order spaces are constructed as subspaces of the third order space. Under a shape regularity assumption, and a mild restriction on the choice of supplemental functions, we develop the convergence properties of the new direct serendipity finite elements. Numerical results with different choices of supplements are compared on two mesh sequences, one regularly distorted and the other one randomly distorted. They all possess a convergence rate that aligns with the theory, while a slight difference lies in their performance. 
    more » « less
  5. We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H 1 , H (curl), or H (div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems. 
    more » « less