skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fine-Scale Adaptations to Environmental Variation and Growth Strategies Drive Phyllosphere Methylobacterium Diversity
ABSTRACT Methylobacterium is a prevalent bacterial genus of the phyllosphere. Despite its ubiquity, little is known about the extent to which its diversity reflects neutral processes like migration and drift, versus environmental filtering of life history strategies and adaptations. In two temperate forests, we investigated how phylogenetic diversity within Methylobacterium is structured by biogeography, seasonality, and growth strategies. Using deep, culture-independent barcoded marker gene sequencing coupled with culture-based approaches, we uncovered a considerable diversity of Methylobacterium in the phyllosphere. We cultured different subsets of Methylobacterium lineages depending upon the temperature of isolation and growth (20°C or 30°C), suggesting long-term adaptation to temperature. To a lesser extent than temperature adaptation, Methylobacterium diversity was also structured across large (>100 km; between forests) and small (<1.2 km; within forests) geographical scales, among host tree species, and was dynamic over seasons. By measuring the growth of 79 isolates during different temperature treatments, we observed contrasting growth performances, with strong lineage- and season-dependent variations in growth strategies. Finally, we documented a progressive replacement of lineages with a high-yield growth strategy typical of cooperative, structured communities in favor of those characterized by rapid growth, resulting in convergence and homogenization of community structure at the end of the growing season. Together, our results show how Methylobacterium is phylogenetically structured into lineages with distinct growth strategies, which helps explain their differential abundance across regions, host tree species, and time. This work paves the way for further investigation of adaptive strategies and traits within a ubiquitous phyllosphere genus. IMPORTANCE Methylobacterium is a bacterial group tied to plants. Despite the ubiquity of methylobacteria and the importance to their hosts, little is known about the processes driving Methylobacterium community dynamics. By combining traditional culture-dependent and -independent (metabarcoding) approaches, we monitored Methylobacterium diversity in two temperate forests over a growing season. On the surface of tree leaves, we discovered remarkably diverse and dynamic Methylobacterium communities over short temporal (from June to October) and spatial (within 1.2 km) scales. Because we cultured different subsets of Methylobacterium diversity depending on the temperature of incubation, we suspected that these dynamics partly reflected climatic adaptation. By culturing strains under laboratory conditions mimicking seasonal variations, we found that diversity and environmental variations were indeed good predictors of Methylobacterium growth performances. Our findings suggest that Methylobacterium community dynamics at the surface of tree leaves results from the succession of strains with contrasting growth strategies in response to environmental variations.  more » « less
Award ID(s):
1831838
PAR ID:
10354707
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Keim, Paul
Date Published:
Journal Name:
mBio
Volume:
13
Issue:
1
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Angert, Esther (Ed.)
    Abstract Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer (HGT). We showed that Methylobacterium contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content, and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition to recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose early branching in Methylobacterium history has been heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandonment of Methylorubrum. 
    more » « less
  2. Abstract Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top‐down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top‐down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests. 
    more » « less
  3. null (Ed.)
    Abstract Understanding how species-rich communities persist is a foundational question in ecology. In tropical forests, tree diversity is structured by edaphic factors, climate, and biotic interactions, with seasonality playing an essential role at landscape scales: wetter and less seasonal forests typically harbor higher tree diversity than more seasonal forests. We posited that the abiotic factors shaping tree diversity extend to hyperdiverse symbionts in leaves—fungal endophytes—that influence plant health, function, and resilience to stress. Through surveys in forests across Panama that considered climate, seasonality, and covarying biotic factors, we demonstrate that endophyte richness varies negatively with temperature seasonality. Endophyte community structure and taxonomic composition reflect both temperature seasonality and climate (mean annual temperature and precipitation). Overall our findings highlight the vital role of climate-related factors in shaping the hyperdiversity of these important and little-known symbionts of the trees that, in turn, form the foundations of tropical forest biodiversity. 
    more » « less
  4. Numerous ring-width chronologies from different species have recently been developed in diverse tropical forests across South America. However, the temporal and spatial climate signals in these tropical chronologies is less well known. In this work, annual growth rings of Amburana cearensis, a widely distributed tropical tree species, were employed to estimate temporal and spatial patterns of climate variability in the transition from the dry Chiquitano (16–17◦S) to the humid Guarayos-southern Amazon (14–15◦S) forests. Four well-replicated chronologies (16–21 trees, 22–28 radii) of A. cearensis were compared with temperature and precipitation records available in the region. The interannual variations in all four A. cearensis tree-ring chronologies are positively correlated with precipitation and negatively with temperature during the late dry-early wet season, the classic moisture response seen widely in trees from dry tropical and temperate forests worldwide. However, the chronologies from the dry Chiquitano forests of southern Bolivia reflect the regional reduction in precipitation during recent decades, while the chronologies from the tropical lowland moist forests in the north capture the recent increase in precipitation in the southern Amazon basin. These results indicate that A. cearensis tree growth is not only sensitive to the moisture balance of the growing season, it can also record subtle differences in regional precipitation trends across the dry to humid forest transition. Comparisons with previously developed Centrolobium microchaete chronologies in the region reveal a substantial common signal between chronologies in similar environments, suggesting that regional differences in climate are a major drivers of tree growth along the precipitation gradient. The difficulty of finding A. cearensis trees over 150-years old is the main limitation involved in the paleoclimate application of this species. The expansion of monocultures and intensive cattle ranching in the South American tropics are contributing to the loss of these old growth A. cearensis trees and the valuable records of climate variability and climate change that they contain. 
    more » « less
  5. Abstract How forests respond to accelerated climate change will affect the terrestrial carbon cycle. To better understand these responses, more examples are needed to assess how tree growth rates react to abrupt changes in growing‐season temperatures. Here we use a natural experiment in which a glacier's fluctuations exposed a temperate rainforest to changes in summer temperatures of similar magnitude to those predicted to occur by 2050. We hypothesized that the onset of glacier‐accentuated temperature trends would act to increase the variance in stand‐level tree growth rates, a proxy for forest net primary productivity. Instead, dendrochronological records reveal that the growth rates of five, co‐occurring conifer species became less synchronous, and this diversification of species responses acted to reduce the variance and to increase the stability of community‐wide growth rates. These results warrant further inquiry into how climate‐induced changes in tree‐growth diversity may help stabilize future ecosystem services like forest carbon storage. 
    more » « less