Unmanned Aerial Systems (UAS) heavily depend on the Global Positioning System (GPS) for navigation. However, the unencrypted civilian GPS signals are subject to different types of threats, including GPS spoofing attacks. In this paper, we evaluate five instance-based learning models for GPS spoofing detection in UAS, namely K Nearest Neighbor, Radius Neighbor, Linear Support Vector Machine (SVM), C-SVM, and Nu-SVM. We used software-defined radio units to collect and extract features from satellite signals. Then, we simulated three types of GPS spoofing attacks specifically the simplistic, intermediate, and sophisticated attacks. The evaluation results show that Nu-SVM outperforms the other instance learning classifiers in terms of accuracy, probability of detection, probability of false alarm, and probability of misdetection. In addition, the model shows good computational performance regarding memory usage and processing time in the detection phase.
more »
« less
Tree-based Supervised Machine Learning Models For Detecting GPS Spoofing Attacks on UAS
The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications.
more »
« less
- Award ID(s):
- 2006674
- PAR ID:
- 10354714
- Date Published:
- Journal Name:
- IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
- Page Range / eLocation ID:
- 0649 to 0653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
NA (Ed.)Unmanned Aerial Systems have become ubiquitous and are now widely used in commercial, consumer, and military applications. Their widespread use is due to a combination of their low cost, high capability, and ability to perform tasks and go places that are not easy or safe for humans. Most UAS platforms are dependent on Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), to provide positioning information for navigation and flight control. Without reliable GPS signals, the flight path cannot be trusted, and flight safety cannot be assured. However, GPS is vulnerable to several types of malicious attacks, including jamming, spoofing, or physical attacks on the GPS constellation itself. Additionally, there are environments in which GPS reception is not always possible, a key example being urban canyon areas where line-of-site to the GPS satellite constellation may be blocked or obscured by large obstacles such as buildings. Numerous methods have been proposed for position estimation in GPS denied environments. However, these methods have significant limitations and typically exhibit poor performance in certain environments and scenarios. This paper analyzes the strengths and weaknesses of existing alternate positioning methods and describes a framework where multiple positioning solutions are jointly employed to construct an optimal position estimate. The proposed framework aims to reduce computation complexity and yield good positioning performance across a wide variety of environments.more » « less
-
Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by an INS-aided GPS system. The goal of the adversary is to travel to alternate locations without being detected. We develop and evaluate algorithms that achieve this goal, providing the adversary significant latitude. Our algorithms build a graph model for a given road network and enable us to derive potential destinations an attacker can reach without raising alarms even with the INS-aided GPS tracking and navigation system. The algorithms render the gyroscope and accelerometer sensors useless as they generate road trajectories indistinguishable from plausible paths (both in terms of turn angles and roads curvature). We also design, build and demonstrate that the magnetometer can be actively spoofed using a combination of carefully controlled coils. To experimentally demonstrate and evaluate the feasibility of the attack in real-world, we implement a first real-time integrated GPS/INS spoofer that accounts for traffic fluidity, congestion, lights, and dynamically generates corresponding spoofing signals. Furthermore, we evaluate our attack on ten different cities using driving traces and publicly available city plans. Our evaluations show that it is possible for an attacker to reach destinations that are as far as 30 km away from the actual destination without being detected. We also show that it is possible for the adversary to reach almost 60--80% of possible points within the target region in some cities. Such results are only a lower-bound, as an adversary can adjust our parameters to spend more resources (e.g., time) on the target source/destination than we did for our performance evaluations of thousands of paths. We propose countermeasures that limit an attacker's ability, without the need for any hardware modifications. Our system can be used as the foundation for countering such attacks, both detecting and recommending paths that are difficult to spoof.more » « less
-
With the increasing use of Unmanned Aerial Vehicles in military and civilian applications, the security of this technology has become one of the critical concerns. UAVs’ positioning and navigation activities are highly dependent on Global Positioning Systems as they provide accurate locations for these vehicles. However, due to the civilian GPS signals being open and unencrypted, malicious users can target them in multiple ways, including by launching Global Positioning System spoofing attacks. To address this security issue, numerous techniques have been proposed to detect and classify these attacks, including supervised machine learning techniques. However, no studies have focused on unsupervised models to detect these attacks. In this paper, we compare the performance of several supervised models with that of unsupervised models in terms of accuracy, probability of detection, probability of misdetection, probability of false alarm, processing time, training time, prediction time, and memory size. The supervised models are Gaussian Naïve Bayes, Classification and Regression Decision Tree, Logistic Regression, Random Forest, Linear-Support Vector Machine, and Artificial Neural Network. The unsupervised models are Principal Component Analysis, K-means clustering, and Autoencoder. The results show that the Classification and Regression Decision Tree model outperforms the other supervised and unsupervised models in detecting and classifying GPS spoofing attacks.more » « less
-
Modern systems and devices, including unmanned aerial systems (UAS), autonomous vehicles, and other unmanned and autonomous systems, commonly rely on the Global Positioning System (GPS) for positioning, navigation, and timing (PNT). Cellular mobile devices rely on GPS for PNT and location-based services. Many of these systems cannot function correctly without GPS; however, GPS signals are susceptible to a wide variety of signal-related disruptions and cyberattacks. GPS threat detection and mitigation have received significant attention recently. There are many surveys and systematic reviews in the literature related to GPS security; however, many existing reviews only briefly discuss GPS security within a larger discussion of cybersecurity. Other reviews focus on niche topics related to GPS security. There are no existing comprehensive reviews of GPS security issues in the literature. This paper fills that gap by providing a comprehensive treatment of GPS security, with an emphasis on UAS applications. This paper provides an overview of the threats to GPS and the state-of-the-art techniques for attack detection and countermeasures. Detection and mitigation approaches are categorized, and the strengths and weaknesses of existing approaches are identified. This paper also provides a comprehensive overview of the state-of-the-art on alternative positioning and navigation techniques in GPS-disrupted environments, discussing the strengths and weaknesses of existing approaches. Finally, this paper identifies gaps in existing research and future research directions.more » « less