skip to main content


Title: Effect of sticker clustering on the dynamics of associative networks
Recent experimental and theoretical work has shown that sticker clustering can be used to enhance properties such as toughness and creep resistance of polymer networks. While it is clear that the changes in properties are related to a change in network topology, the mechanistic relationship is still not well understood. In this work, the effect of sticker clustering was investigated by comparing the dynamics of random copolymers with those where the stickers are clustered at the ends of the chain in the unentangled regime using both linear mechanics and diffusion measurements. Copolymers of N , N -dimethyl acrylamide (DMA) and pendant histidine groups were synthesized using reversible addition–fragmentation chain transfer (RAFT) polymerization. The clustered polymers were synthesized using a bifunctional RAFT agent, such that the midblock consisted of PDMA and the two end blocks were random copolymers of DMA and the histidine-functionalized monomer. Upon addition of Ni ions, transient metal-coordinate crosslinks are formed as histidine–Ni complexes. Combined studies of rheology, neutron scattering and self-diffusion measurements using forced Rayleigh scattering revealed changes to the network topology and stress relaxation modes. The network topology is proposed to consist of aggregates of the histidine–Ni complexes bridged by the non-associative midblock. Therefore, stress relaxation requires the cooperative dissociation of multiple bonds, resulting in increased relaxation times. The increased relaxation times, however, were accompanied by faster diffusion. This is attributed to the presence of defects such as elastically inactive chain loops. This study demonstrates that the effects of cooperative sticker dissociation can be observed even in the presence of a significant fraction of loop defects which are known to alter the nonlinear properties of conventional telechelic polymers.  more » « less
Award ID(s):
1709315
NSF-PAR ID:
10354751
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
39
ISSN:
1744-683X
Page Range / eLocation ID:
8960 to 8972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work investigates static gel structure and cooperative multi-chain motion in associative networks using a well-defined model system composed of artificial coiled-coil proteins. The combination of small-angle and ultra-small-angle neutron scattering provides evidence for three static length scales irrespective of protein gel design which are attributed to correlations arising from the blob length, inter-junction spacing, and multi-chain density fluctuations. Self-diffusion measurements using forced Rayleigh scattering demonstrate an apparent superdiffusive regime in all gels studied, reflecting a transition between distinct “slow” and “fast” diffusive species. The interconversion between the two diffusive modes occurs on a length scale on the order of the largest correlation length observed by neutron scattering, suggesting a possible caging effect. Comparison of the self-diffusive behavior with characteristic molecular length scales and the single-sticker dissociation time inferred from tracer diffusion measurements supports the primarily single-chain mechanisms of self-diffusion as previously conceptualized. The step size of the slow mode is comparable to the root-mean-square length of the midblock strands, consistent with a single-chain walking mode rather than collective motion of multi-chain aggregates. The transition to the fast mode occurs on a timescale 10–1000 times the single-sticker dissociation time, which is consistent with the onset of single-molecule hopping. Finally, the terminal diffusivity depends exponentially on the number of stickers per chain, further suggesting that long-range diffusion occurs by molecular hopping rather than sticky Rouse motion of larger assemblies. Collectively, the results suggest that diffusion of multi-chain clusters is dominated by the single-chain pictures proposed in previous coarse-grained modeling. 
    more » « less
  2. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less
  3. Supramolecular polymer gels are an evolving class of soft materials with a vast number of properties that can be tuned to desired applications. Despite continuous advances concerning polymer synthesis, sustainability or adaptability, a consistent understanding of the interplay between structure, dynamics, and diffusion processes within transient networks is lacking. In this study, the hierarchy of several relaxation processes is investigated, starting from a microscopic perspective of a single sticker dissociation event up to the center-of-mass diffusion of a star-shaped polymer building block on different length scales, as well as the resulting macroscopic mechanical response to applied external stress. In addition to that, a second focus is placed on the gel micro-structure that is analyzed by light scattering. Conversion of the dynamic light scattering (DLS) inverse length scale into real space allows for a combination of relaxation times with those obtained by forced Rayleigh scattering (FRS). For these investigations, a model-type metallo-supramolecular network consisting of narrowly dispersed tetra-arm poly(ethylene glycol)-terpyridine macromolecules that are interconnected via complexation with zinc ions is chosen. Assembling the obtained activation energies reveals that all complex dissociation-governed relaxation processes exhibit similar activation energies. 
    more » « less
  4. Maximizing ion conduction in single-ion-conducting ionomers is essential for their application in energy-related technologies such as Li-ion batteries. Understanding the anion chemical composition impacts on ion conduction offers new perspectives to maximize ion transport, since the current approach of lowering T g has apparently reached a limit (lowest T g ∼ 190 K, highest conductivity ∼10 −5 –10 −4 S cm −1 ). Here, a series of random ionomers are synthesized by copolymerizing poly(ethylene glycol)methacrylate with either sulfonylimide lithium methacrylate (MTLi) or sulfonate lithium methacrylate (MSLi) using reversible addition–fragmentation chain transfer (RAFT) polymerization. Li-Ion conduction and self-diffusion coefficients ( D Li + ) of the ionomers are characterized with dielectric relaxation spectroscopy (DRS) and pulsed-field-gradient (PFG) NMR diffusometry, respectively. Increasing ion content decreases the Li-ion conductivity and D Li + , as expected from the increased T g . Moreover, a considerably lower ionic conductivity and D Li + are observed for MSLi compared to MTLi at constant ion content and T g / T . As revealed from X-ray scattering, strong ion aggregation in MSLi results in much lower conductivity and D Li + compared with less aggregated MTLi based on the more delocalized sulfonylimide anion. These results emphasize the detrimental and molecularly specific role of ion aggregation in Li-ion conductivity, and highlight the necessity for minimizing ion aggregation via the rational choice of anion chemical composition. 
    more » « less
  5. This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths. 
    more » « less