skip to main content


Title: Hierarchy of relaxation times in supramolecular polymer model networks
Supramolecular polymer gels are an evolving class of soft materials with a vast number of properties that can be tuned to desired applications. Despite continuous advances concerning polymer synthesis, sustainability or adaptability, a consistent understanding of the interplay between structure, dynamics, and diffusion processes within transient networks is lacking. In this study, the hierarchy of several relaxation processes is investigated, starting from a microscopic perspective of a single sticker dissociation event up to the center-of-mass diffusion of a star-shaped polymer building block on different length scales, as well as the resulting macroscopic mechanical response to applied external stress. In addition to that, a second focus is placed on the gel micro-structure that is analyzed by light scattering. Conversion of the dynamic light scattering (DLS) inverse length scale into real space allows for a combination of relaxation times with those obtained by forced Rayleigh scattering (FRS). For these investigations, a model-type metallo-supramolecular network consisting of narrowly dispersed tetra-arm poly(ethylene glycol)-terpyridine macromolecules that are interconnected via complexation with zinc ions is chosen. Assembling the obtained activation energies reveals that all complex dissociation-governed relaxation processes exhibit similar activation energies.  more » « less
Award ID(s):
1709315
NSF-PAR ID:
10454161
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
8
ISSN:
1463-9076
Page Range / eLocation ID:
4859 to 4870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dissociation energy of dynamic bonds in thermoresponsive phase‐change salogels is explored using rheology and dynamic light scattering (DLS). The salogels are formed by polyvinyl alcohol (PVA) reversibly crosslinked by hydrogen‐bonding amine‐terminated molecules in an inorganic phase‐change material—lithium nitrate trihydrate (LNH) salt—as a solvent. The crosslinker geometry (linear vs branched) has a strong effect on both the gelation temperature (Tgel) and the crosslinker to polymer ratio at which the gelation occurs. Due to their higher functionality, dendritic crosslinkers are more efficient gelators as compared to their linear counterparts, inducing PVA gelation at a lower concentration of a crosslinker and resulting in salogels with higherTgel. Both stress relaxation and DLS data can be fitted by the exponential functions with temperature‐independent exponents of ≈0.5 and 2, respectively. For the first time, it is reported that the crosslinker dissociation activation energy determined from the rheological stress relaxation time and DLS slow mode decay time are in very good agreement, comprising ≈130–140 kJ mol−1for salogels with both linear and dendritic crosslinkers.

     
    more » « less
  2. Recent experimental and theoretical work has shown that sticker clustering can be used to enhance properties such as toughness and creep resistance of polymer networks. While it is clear that the changes in properties are related to a change in network topology, the mechanistic relationship is still not well understood. In this work, the effect of sticker clustering was investigated by comparing the dynamics of random copolymers with those where the stickers are clustered at the ends of the chain in the unentangled regime using both linear mechanics and diffusion measurements. Copolymers of N , N -dimethyl acrylamide (DMA) and pendant histidine groups were synthesized using reversible addition–fragmentation chain transfer (RAFT) polymerization. The clustered polymers were synthesized using a bifunctional RAFT agent, such that the midblock consisted of PDMA and the two end blocks were random copolymers of DMA and the histidine-functionalized monomer. Upon addition of Ni ions, transient metal-coordinate crosslinks are formed as histidine–Ni complexes. Combined studies of rheology, neutron scattering and self-diffusion measurements using forced Rayleigh scattering revealed changes to the network topology and stress relaxation modes. The network topology is proposed to consist of aggregates of the histidine–Ni complexes bridged by the non-associative midblock. Therefore, stress relaxation requires the cooperative dissociation of multiple bonds, resulting in increased relaxation times. The increased relaxation times, however, were accompanied by faster diffusion. This is attributed to the presence of defects such as elastically inactive chain loops. This study demonstrates that the effects of cooperative sticker dissociation can be observed even in the presence of a significant fraction of loop defects which are known to alter the nonlinear properties of conventional telechelic polymers. 
    more » « less
  3. When rheological models of polymer blends are used for inverse modeling, they can characterize polymer mixtures from rheological observations. This requires repeated evaluation of potentially expensive rheological models. We explored surrogate models based on Gaussian processes (GP-SM) as a cheaper alternative for describing the rheology of polydisperse binary blends. We used the time-dependent diffusion double reptation (TDD-DR) model as the true model; it takes a 5-dimensional input vector specifying the binary blend as input and yields a function called the relaxation spectrum as output. We used the TDD-DR model to generate training data of different sizes [Formula: see text], via Latin hypercube sampling. The optimal values of the GP-SM hyper-parameters, assuming a separable covariance kernel, were obtained by maximum likelihood estimation. The GP-SM interpolates the training data by design and offers reasonable predictions of relaxation spectra with uncertainty estimates. In general, the accuracy of GP-SMs improves as the size of the training data [Formula: see text] increases, as does the cost for training and prediction. The optimal hyper-parameters were found to be relatively insensitive to [Formula: see text]. Finally, we considered the inverse problem of inferring the structure of the polymer blend from a synthetic dataset generated using the true model. Surprisingly, the solution to the inverse problem obtained using GP-SMs and TDD-DR was qualitatively similar. GP-SMs can be several orders of magnitude cheaper than expensive rheological models, which provides a proof-of-concept validation for using GP-SMs for inverse problems in polymer rheology. 
    more » « less
  4. This work investigates static gel structure and cooperative multi-chain motion in associative networks using a well-defined model system composed of artificial coiled-coil proteins. The combination of small-angle and ultra-small-angle neutron scattering provides evidence for three static length scales irrespective of protein gel design which are attributed to correlations arising from the blob length, inter-junction spacing, and multi-chain density fluctuations. Self-diffusion measurements using forced Rayleigh scattering demonstrate an apparent superdiffusive regime in all gels studied, reflecting a transition between distinct “slow” and “fast” diffusive species. The interconversion between the two diffusive modes occurs on a length scale on the order of the largest correlation length observed by neutron scattering, suggesting a possible caging effect. Comparison of the self-diffusive behavior with characteristic molecular length scales and the single-sticker dissociation time inferred from tracer diffusion measurements supports the primarily single-chain mechanisms of self-diffusion as previously conceptualized. The step size of the slow mode is comparable to the root-mean-square length of the midblock strands, consistent with a single-chain walking mode rather than collective motion of multi-chain aggregates. The transition to the fast mode occurs on a timescale 10–1000 times the single-sticker dissociation time, which is consistent with the onset of single-molecule hopping. Finally, the terminal diffusivity depends exponentially on the number of stickers per chain, further suggesting that long-range diffusion occurs by molecular hopping rather than sticky Rouse motion of larger assemblies. Collectively, the results suggest that diffusion of multi-chain clusters is dominated by the single-chain pictures proposed in previous coarse-grained modeling. 
    more » « less
  5. This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths. 
    more » « less