skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FLOWUnsteady: An Interactional Aerodynamics Solver for Multirotor Aircraft and Wind Energy
View Video Presentation: https://doi.org/10.2514/6.2022-3218.vid The ability to accurately and rapidly assess unsteady interactional aerodynamics is a shortcoming and bottleneck in the design of various next-generation aerospace systems: from electric vertical takeoff and landing (eVTOL) aircraft to airborne wind energy (AWE) and wind farms. In this study, we present a meshless CFD framework based on the reformulated vortex particle method (rVPM) for the analysis of complex interactional aerodynamics. The rVPM is a large eddy simulation (LES) solving the Navier-Stokes equations in their vorticity form. It uses a meshless Lagrangian scheme, which not only avoids the hurdles of mesh generation, but it also conserves the vortical structure of wakes over long distances with minimal numerical dissipation, while being 100x faster than conventional mesh-based LES. Wings and rotating blades are introduced in the computational domain through actuator line and actuator surface models. Simulations are coupled with an aeroacoustics solver to predict tonal and broadband noise radiated by rotors. The framework, called FLOWUnsteady, is hereby released as an open-source code and extensively validated. Validation studies published in previous work by the authors are summarized, showcasing rotors across operating conditions with a rotor in hover, propellers, a wind turbine, and two side-by-side rotors in hover. Validation of rotor-wing interactions is presented simulating a tailplane with tip-mounted propellers and a blown wing with propellers mounted mid-span. The capabilities of the framework are showcased through the simulation of a tiltwing eVTOL vehicle and an AWE wind-harvesting aircraft, featuring rotors with variable RPM, variable pitch, tilting of wings and rotors, non-trivial flight paths, and complex aerodynamic interactions.  more » « less
Award ID(s):
1650547
PAR ID:
10354835
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIAA AVIATION 2022 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The vortex particle method (VPM) has gained popularity in recent years due to a growing need to predict complex aerodynamic interactions during the preliminary design of electric multirotor aircraft. However, VPM is known to be numerically unstable when vortical structures break down close to the turbulent regime. In recent work, the VPM has been reformulated as a large-eddy simulation (LES) in a scheme that is both meshless and numerically stable without increasing its computational cost. In this study, we build upon this meshless LES scheme to create a solver for interactional aerodynamics. Propeller blades are introduced through an actuator line model following well-established practices for LES. A novel, vorticity-based actuator surface model (ASM) is developed for wings, which is suitable for propeller–wing interactions when a wake impinges on the surface of a wing. This ASM imposes the no-flow-through condition at the airfoil centerline by calculating the circulation that meets this condition and by immersing the associated vorticity in the LES following a pressure-like distribution. Extensive validation of propeller–wing interactions is presented by simulating a tailplane with tip-mounted propellers and a blown wing with propellers mounted midspan. 
    more » « less
  2. Multirotor configurations introduce complicated aerodynamic and aeroacoustic interactions that must be considered during aircraft design. In this paper we explore two numerical methods to model the acoustic noise caused by aerodynamic rotor-on-rotor interactions of rotors in hover. The first method uses a conventional mesh-based unsteady Reynolds-average Navier-Stokes (URANS) solver, while the second consists of a meshless Lagrangian solver based on the viscous vortex particle method (VPM). Both methods are coupled with an aeroacoustics solver for tonal and broadband noise predictions. Noise predictions are validated for single and multi-rotor configurations, obtaining with the VPM a similar accuracy than URANS while being two orders of magnitude faster. We characterize the interactions of two side-by-side rotors in hover as the tip-to-tip distance and downstream spacing are varied. At an observer located six diameters away, multirotor noise is the strongest above and below the rotors, increasing by about 10 dBA directly underneath as the rotors are brought closer together. The interactions show no sensitivity to blade loading distribution, indicating that multirotor interactions are not alleviated with a lighter tip loading. We found that noise can be mitigated by spacing the rotors in the downstream direction—with the optimal spacing being about half a diameter—achieving a noise decrease of about 4 dBA without any aerodynamic penalties. 
    more » « less
  3. Multirotor configurations introduce complicated aerodynamic and aeroacoustic interactions that must be considered during aircraft design. In this paper we explore two numerical methods to model the acoustic noise caused by aerodynamic rotor-on-rotor interactions of rotors in hover. The first method uses a conventional mesh-based unsteady Reynolds-average Navier-Stokes (URANS) solver, while the second consists of a meshless Lagrangian solver based on the viscous vortex particle method (VPM). Both methods are coupled with an aeroacoustics solver for tonal and broadband noise predictions. Noise predictions are validated for single and multi-rotor configurations, obtaining with the VPM a similar accuracy than URANS while being two orders of magnitude faster. We characterize the interactions of two side-by-side rotors in hover as the tip-to-tip distance and downstream spacing are varied. At an observer located six diameters away, multirotor noise is the strongest above and below the rotors, increasing by about 10 dBA directly underneath as the rotors are brought closer together. The interactions show no sensitivity to blade loading distribution, indicating that multirotor interactions are not alleviated with a lighter tip loading. We found that noise can be mitigated by spacing the rotors in the downstream direction—with the optimal spacing being about half a diameter—achieving a noise decrease of about 4 dBA without any aerodynamic penalties. 
    more » « less
  4. A novel formulation of the vortex particle method (VPM) is developed for large-eddy simulation (LES) in a meshless scheme that is numerically stable. A new set of VPM governing equations are derived from the LES-filtered Navier–Stokes equations. The new equations reinforce the conservation of angular momentum by resizing vortex elements subject to vortex stretching. In addition to the VPM reformulation, a new anisotropic dynamic model of subfilter-scale (SFS) vortex stretching is developed. This SFS model is well suited for turbulent flows with coherent vortical structures, where the predominant cascade mechanism is vortex stretching. The mean and fluctuating components of turbulent flow and Reynolds stresses are validated through the simulation of a turbulent round jet. The computational efficiency of the scheme is showcased in the simulation of an aircraft rotor in hover, showing our meshless LES to be 100 times faster than a mesh-based LES with similar fidelity. The implementation of our meshless LES scheme is released as open-source software, called FLOWVPM 
    more » « less
  5. Winged eVTOL aircraft’s ability to generate aerodynamic lift with wings and to create upward thrust with upward-facing rotors makes these vehicles capable of the kind of versatile flight needed in urban environments. Because of these vehicles’ aerodynamic complexities and their unique methods of producing thrusts and torques, control allocation is needed to determine how to distribute force and torque efforts across the aircraft’s actuators. However, current control allocation methods fail to properly represent the actuators’ complex dynamics and are unable to harness the full potential of these over-actuated vehicles. Current shortcomings include modeling rotors as linear effectors while the wide range of airspeeds experienced by eVTOL aircraft leads to significant nonlinearities in the thrust and torque achieved by each rotor. This means linear control allocation methods may consistently fail to produce desired thrusts and torques, which can inhibit the vehicle from tracking a trajectory at best, and at worst can cause the vehicle to stall and lose control. Additionally, current control allocation methods are often unable to prioritize low-energy actuators resulting in shorter battery life. We present a nonlinear control allocation method that considers a nonlinear rotor model, allows for prioritization of low-energy control surfaces over rotors, and reliably accounts for actuator saturation. Simulation results show a 90% reduction in high-airspeed trajectory tracking position error from a typical, linear least-squares pseudoinverse control allocation method while maintaining comparable energy use. 
    more » « less