skip to main content

This content will become publicly available on April 7, 2023

Title: Contribution of Pseudomonas aeruginosa Exopolysaccharides Pel and Psl to Wound Infections
Biofilms are the cause of most chronic bacterial infections. Living within the biofilm matrix, which is made of extracellular substances, including polysaccharides, proteins, eDNA, lipids and other molecules, provides microorganisms protection from antimicrobials and the host immune response. Exopolysaccharides are major structural components of bacterial biofilms and are thought to be vital to numerous aspects of biofilm formation and persistence, including adherence to surfaces, coherence with other biofilm-associated cells, mechanical stability, protection against desiccation, binding of enzymes, and nutrient acquisition and storage, as well as protection against antimicrobials, host immune cells and molecules, and environmental stressors. However, the contribution of specific exopolysaccharide types to the pathogenesis of biofilm infection is not well understood. In this study we examined whether the absence of the two main exopolysaccharides produced by the biofilm former Pseudomonas aeruginosa would affect wound infection in a mouse model. Using P. aeruginosa mutants that do not produce the exopolysaccharides Pel and/or Psl we observed that the severity of wound infections was not grossly affected; both the bacterial load in the wounds and the wound closure rates were unchanged. However, the size and spatial distribution of biofilm aggregates in the wound tissue were significantly different when Pel and Psl more » were not produced, and the ability of the mutants to survive antibiotic treatment was also impaired. Taken together, our data suggest that while the production of Pel and Psl do not appear to affect P. aeruginosa pathogenesis in mouse wound infections, they may have an important implication for bacterial persistence in vivo. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Frontiers in Cellular and Infection Microbiology
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new technique was used to measure the viscoelasticity of in vivoPseudomonas aeruginosabiofilms. This was done through ex vivo microrheology measurements of in vivo biofilms excised from mouse wound beds. To our knowledge, this is the first time that the mechanics of in vivo biofilms have been measured. In vivo results are then compared to typical in vitro measurements. Biofilms grown in vivo are more relatively elastic than those grown in a wound-like medium in vitro but exhibited similar compliance. Using various genetically mutatedP. aeruginosastrains, it is observed that the contributions of the exopolysaccharides Pel, Psl, and alginate to biofilm viscoelasticity were different for the biofilms grown in vitro and in vivo. In vitro experiments with collagen containing medium suggest this likely arises from the incorporation of host material, most notably collagen, into the matrix of the biofilm when it is grown in vivo. Taken together with earlier studies that examined the in vitro effects of collagen on mechanical properties, we conclude that collagen may, in some cases, be the dominant contributor to biofilm viscoelasticity in vivo.

  2. Many bacterial species in nature possess the ability to transition into a sessile lifestyle and aggregate into cohesive colonies, known as biofilms. Within a biofilm, bacterial cells are encapsulated within an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, nucleic acids, lipids, and other small molecules. The transition from planktonic growth to the biofilm lifecycle provides numerous benefits to bacteria, such as facilitating adherence to abiotic surfaces, evasion of a host immune system, and resistance to common antibiotics. As a result, biofilm-forming bacteria contribute to 65% of infections in humans, and substantially increase the energy and time required for treatment and recovery. Several biofilm specific exopolysaccharides, including cellulose, alginate, Pel polysaccharide, and poly- N -acetylglucosamine (PNAG), have been shown to play an important role in bacterial biofilm formation and their production is strongly correlated with pathogenicity and virulence. In many bacteria the biosynthetic machineries required for assembly of these exopolysaccharides are regulated by common signaling molecules, with the second messenger cyclic di-guanosine monophosphate (c - di-GMP) playing an especially important role in the post-translational activation of exopolysaccharide biosynthesis. Research on treatments of antibiotic-resistant and biofilm-forming bacteria through direct targeting of c-di-GMP signaling has shown promise, including peptide-based treatments that sequestermore »intracellular c-di-GMP. In this review, we will examine the direct role c-di-GMP plays in the biosynthesis and export of biofilm exopolysaccharides with a focus on the mechanism of post-translational activation of these pathways, as well as describe novel approaches to inhibit biofilm formation through direct targeting of c-di-GMP.« less
  3. Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
  4. Surgical site infections (SSIs) are a leading cause of morbidity and mortality and a significant expense to the healthcare system and hospitals. The majority of these infections are preventable; however, increasing bacterial resistance, biofilm persistence, and human error contribute to the occurrence of these healthcare-associated infections. We present a flexible antimicrobial blue-light emitting bandage designed for use on postoperative incisions and wounds. The photonic device is designed to inactivate bacteria present on the skin and prevent bacterial colonization of the site, thus reducing the occurrence of SSIs. This antimicrobial light emitting bandage uses blue light’s proven abilities to inactivate a wide range of clinical pathogens regardless of their resistance to antibiotics, inactivate bacteria without harming mammalian cells, improve wound healing, and inactivate bacteria in biofilms. The antimicrobial bandage consists of a thin 2”x2” silicone sheet with an array of 77 LEDs embedded in multiple layers of the material for thermal management. The 405 nm center wavelength LED array is designed to be a wearable device that integrates with standard hospital infection prevention protocols. The device was characterized for irradiance of 44.5 mW/cm2. Methicillin-resistant Staphylococcus aureus seeded in a petri dish was used to evaluate bacterial inactivation in vitro. Starting withmore »a concentration of 2.16 x 107 colony forming units (CFU)/mL, 45% of the bacteria was inactivated within 15 minutes, 65% had been inactivated by 30 minutes, 99% was inactivated by 60 minutes, and a 7 log reduction and complete sterilization was achieved within 120 minutes.« less
  5. Mitchell, Aaron P. (Ed.)
    ABSTRACT Microbe-microbe interactions can strongly influence growth and biofilm formation kinetics. For Pseudomonas aeruginosa and Candida albicans , which are found together in diverse clinical sites, including urinary and intravenous catheters and the lungs of individuals with cystic fibrosis (CF), we compared the kinetics of biofilm formation by each species in dual-species and single-species biofilms. We engineered fluorescent protein constructs for P. aeruginosa (producing mKO-κ ) and C. albicans (producing mKate2 ) that did not alter growth and enabled single-cell resolution imaging by live-sample microscopy. Using these strains in an optically clear derivative of synthetic CF sputum medium, we found that both P. aeruginosa and C. albicans displayed increased biovolume accumulation—by three- and sixfold, respectively—in dual-species biofilms relative to single-species biofilms. This result was specific to the biofilm environment, as enhanced growth was not observed in planktonic cocultures. Stimulation of C. albicans biofilm formation occurred regardless of whether P. aeruginosa was added at the time of fungal inoculation or 24 h after the initiation of biofilm development. P. aeruginosa biofilm increases in cocultures did not require the Pel extracellular polysaccharide, phenazines, and siderophores known to influence C. albicans . P. aeruginosa mutants lacking Anr, LasR, and BapA were not significantlymore »stimulated by C. albicans , but they still promoted a significant enhancement of biofilm development of the fungus, suggesting a fungal response to the presence of bacteria. Last, we showed that a set of P. aeruginosa clinical isolates also prompted an increase of biovolume by C. albicans in coculture. IMPORTANCE There is an abundance of work on both P. aeruginosa and C. albicans in isolation, and quite some work as well on the way these two microbes interact. These studies do not, however, consider biofilm environments under flow, and our results here show that the expected outcome of interaction between these two pathogens can actually be reversed under flow, from pure antagonism to an increase in biomass on the part of both. Our work also highlights the importance of cellular-scale spatial structure in biofilms for understanding multispecies population dynamics.« less