skip to main content


Title: Predator-permanence hypothesis in time: Community dynamics in a seasonally flooded wetland
The predator-permanence hypothesis predicts that as hydroperiod increases in lentic ecosystems, biotic interactions—mainly predation—replace physical factors like drying as the main determinant of community structure and population dynamics. We propose that the same transition occurs over time in seasonally flooded ecosystems that are connected to permanent water bodies. To test for evidence of successional changes that are similar to spatial changes in the relative importance of drying and predation, we used a 12-y time series of snail density, predator density, and water depth at 4 sites arranged along a nutrient gradient in a subtropical, seasonally flooded wetland, the Florida Everglades, USA. The rate of change in snail population size was negatively correlated with their density at all 4 sites, suggesting that density-dependent factors such as resource limitation regulate snail dynamics. The strength of the relationship varied among sites such that when water depth changes were less important, snail population size was more important in predicting changes in snail population size. At the site that consistently had the greatest snail density, crayfish density negatively affected the rate of snail population change, suggesting that crayfish predation may limit snail population growth in areas with more or higher-quality resources that support larger snail populations. Tethering studies were also conducted, which revealed higher snail mortality in the wet season, primarily because crushing predators (e.g., molluscivorous fishes) were more common at that time and added to the chronic mortality by entry-based predators (e.g., crayfish, which access snails through their aperture). In summary, 3 of the sites resembled temporary or permanent fishless ponds where snail populations were primarily structured by abiotic factors, intraspecific competition, and invertebrate predators (e.g., crayfish) during the wet season, whereas 1 site showed evidence that snail populations were also influenced by molluscivorous fish. This temporal change in importance of water permanence factors to fish that affected population dynamics supports the spatial pattern proposed by the predator-permanence hypothesis.  more » « less
Award ID(s):
2025954
NSF-PAR ID:
10355031
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Freshwater Science
ISSN:
2161-9549
Page Range / eLocation ID:
000 to 000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mancinelli, Giorgio (Ed.)

    The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis–a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrataandBulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations.

     
    more » « less
  2. Abstract

    Predation on parasites is a common interaction with multiple, concurrent outcomes. Free‐living stages of parasites can comprise a large portion of some predators' diets and may be important resources for population growth. Predation can also reduce the density of infectious agents in an ecosystem, with resultant decreases in infection rates. While predator–parasite interactions likely vary with parasite transmission strategy, few studies have examined how variation in transmission mode influences contact rates with predators and the associated changes in consumption risk.

    To understand how transmission mode mediates predator–parasite interactions, we examined associations between an oligochaete predatorChaetogaster limnaeithat lives commensally on freshwater snails and nine trematode taxa that infect snails.Chaetogasteris hypothesized to consume active (i.e. mobile), free‐living stages of trematodes that infect snails (miracidia), but not the passive infectious stages (eggs); it could thus differentially affect transmission and infection prevalence of parasites, including those with medical or veterinary importance. Alternatively, when infection does occur,Chaetogastercan consume and respond numerically to free‐living trematode stages released from infected snails (cercariae). These two processes lead to contrasting predictions about whetherChaetogasterand trematode infection of snails correlate negatively (‘protective predation’) or positively (‘predator augmentation’).

    Here, we tested how parasite transmission mode affectedChaetogaster–trematode relationships using data from 20,759 snails collected across 4 years from natural ponds in California. Based on generalized linear mixed modelling, snails with moreChaetogasterwere less likely to be infected by trematodes that rely on active transmission. Conversely, infections by trematodes with passive infectious stages were positively associated with per‐snailChaetogasterabundance.

    Our results suggest that trematode transmission mode mediates the net outcome of predation on parasites. For trematodes with active infectious stages, predatoryChaetogasterlimited the risk of snail infection and its subsequent pathology (i.e. castration). For taxa with passive infectious stages, no such protective effect was observed. Rather, infected snails were associated with higherChaetogasterabundance, likely owing to the resource subsidy provided by cercariae. These findings highlight the ecological and epidemiological importance of predation on free‐living stages while underscoring the influence of parasite life history in shaping such interactions.

     
    more » « less
  3. Abstract

    As coral populations decline across the Caribbean, it is becoming increasingly important to understand the forces that inhibit coral survivorship and recovery. Predation by corallivores, such as the short coral snailCoralliophila abbreviata, are one such threat to coral health and recovery worldwide, but current understanding of the factors controlling corallivore populations, and therefore predation pressure on corals, remains limited. To examine the extent to which bottom-up forces (i.e., coral prey), top-down forces (i.e., predators), and marine protection relate toC. abbreviatadistributions, we surveyedC. abbreviataabundance, percent coral cover, and the abundance of potential snail predators across six protected and six unprotected reefs in the Florida Keys. We found thatC. abbreviataabundance was lower in protected areas where predator assemblages were also more diverse, and that across all sites snail abundance generally increased with coral cover.C. abbreviataabundance had strong, negative relationships with two gastropod predators—the Caribbean spiny lobster (Panulirus argus) and the grunt black margate (Anisotremus surinamensis), which may be exerting top-down pressure onC. abbreviatapopulations. Further, we found the size ofC. abbreviatawas also related to reef protection status, with largerC. abbreviataon average in protected areas, suggesting that gape-limited predators such asP. argusandA. surinamensismay alter size distributions by targeting small snails. Combined, these results provide preliminary evidence that marine protection in the Florida Keys may preserve critical trophic interactions that indirectly promote coral success via control of local populations of the common corallivorous snailC. abbreviata.

     
    more » « less
  4. Abstract

    Keystone predation can be a determinant of community structure, including species diversity, but factors underlying “keystoneness” have been minimally explored. Using the system in which the original keystone, the sea starPisaster ochraceus, was discovered, we focused on two potential (but overlapping) determinants of keystoneness: intrinsic traits or state variables of the species (e.g., size, density), and extrinsic environmental parameters (e.g., prey productivity) that may provide conditions favorable for keystone predator evolution. Using a comparative‐experimental approach, with repeated field experiments at multiple sites across a variable coastal environment, we tested predation rates, or how quickly predators consumed prey, and predation effects, or community response to predator presence or absence. We tested five hypotheses: (H1) predation rates and effects will vary in space but not time; (H2) per population predation rates will vary primarily with individual traits and population variables; (HJHH3) per capita predation rates will vary only with individual traits; (H4) predation effects will vary with traits, variables, and external drivers; and (H5) as predicted by the keystone predation hypothesis, diversity will vary unimodally with predation pressure. As hypothesized, predation rates differed among sites but not over time (H1), and in caging exclusion experiments, predation effect varied with both intrinsic and extrinsic factors (H4). Unexpectedly, predation rates varied with both intrinsic and extrinsic (H2, per population), or only with extrinsic (H3, per capita) factors. Further, in large‐plot exclusion experiments, predation effect was most closely associated with individual traits (contraH4). Finally, taxon diversity varied unimodally with proxies of predation pressure (sessile prey abundance) and was sensitive to extrinsic factors (mussel growth, temperature, and upwelling,H5). Hence, keystoneness depended on predator individual traits, predator population variables, and environmental parameters. However, temporal differences in caging experiments suggested that environmental characteristics underlying prey dynamics may be preeminent. Compared to prior experiments, predation was weaker with low prey input compared to periods with high prey input. Collectively, our results suggest that keystone predator evolution depends on the coalescence of species‐specific characteristics, and environmental parameters favoring high prey productivity. Our approach may be a model for future studies exploring the generality of keystoneness.

     
    more » « less
  5. Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch . We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage. 
    more » « less