skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predator-permanence hypothesis in time: Community dynamics in a seasonally flooded wetland
The predator-permanence hypothesis predicts that as hydroperiod increases in lentic ecosystems, biotic interactions—mainly predation—replace physical factors like drying as the main determinant of community structure and population dynamics. We propose that the same transition occurs over time in seasonally flooded ecosystems that are connected to permanent water bodies. To test for evidence of successional changes that are similar to spatial changes in the relative importance of drying and predation, we used a 12-y time series of snail density, predator density, and water depth at 4 sites arranged along a nutrient gradient in a subtropical, seasonally flooded wetland, the Florida Everglades, USA. The rate of change in snail population size was negatively correlated with their density at all 4 sites, suggesting that density-dependent factors such as resource limitation regulate snail dynamics. The strength of the relationship varied among sites such that when water depth changes were less important, snail population size was more important in predicting changes in snail population size. At the site that consistently had the greatest snail density, crayfish density negatively affected the rate of snail population change, suggesting that crayfish predation may limit snail population growth in areas with more or higher-quality resources that support larger snail populations. Tethering studies were also conducted, which revealed higher snail mortality in the wet season, primarily because crushing predators (e.g., molluscivorous fishes) were more common at that time and added to the chronic mortality by entry-based predators (e.g., crayfish, which access snails through their aperture). In summary, 3 of the sites resembled temporary or permanent fishless ponds where snail populations were primarily structured by abiotic factors, intraspecific competition, and invertebrate predators (e.g., crayfish) during the wet season, whereas 1 site showed evidence that snail populations were also influenced by molluscivorous fish. This temporal change in importance of water permanence factors to fish that affected population dynamics supports the spatial pattern proposed by the predator-permanence hypothesis.  more » « less
Award ID(s):
2025954
PAR ID:
10355031
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Freshwater Science
ISSN:
2161-9549
Page Range / eLocation ID:
000 to 000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mancinelli, Giorgio (Ed.)
    The human burden of environmentally transmitted infectious diseases can depend strongly on ecological factors, including the presence or absence of natural enemies. The marbled crayfish (Procambarus virginalis) is a novel invasive species that can tolerate a wide range of ecological conditions and colonize diverse habitats. Marbled crayfish first appeared in Madagascar in 2005 and quickly spread across the country, overlapping with the distribution of freshwater snails that serve as the intermediate host of schistosomiasis–a parasitic disease of poverty with human prevalence ranging up to 94% in Madagascar. It has been hypothesized that the marbled crayfish may serve as a predator of schistosome-competent snails in areas where native predators cannot and yet no systematic study to date has been conducted to estimate its predation rate on snails. Here, we experimentally assessed marbled crayfish consumption of uninfected and infected schistosome-competent snails (Biomphalaria glabrataandBulinus truncatus) across a range of temperatures, reflective of the habitat range of the marbled crayfish in Madagascar. We found that the relationship between crayfish consumption and temperature is unimodal with a peak at ~27.5°C. Per-capita consumption increased with body size and was not affected either by snail species or their infectious status. We detected a possible satiation effect, i.e., a small but significant reduction in per-capita consumption rate over the 72-hour duration of the predation experiment. Our results suggest that ecological parameters, such as temperature and crayfish weight, influence rates of consumption and, in turn, the potential impact of the marbled crayfish invasion on snail host populations. 
    more » « less
  2. Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch . We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage. 
    more » « less
  3. Abstract There is growing evidence that prey perceive the risk of predation and alter their behavior in response, resulting in changes in spatial distribution and potential fitness consequences. Previous approaches to mapping predation risk across a landscape quantify predator space use to estimate potential predator‐prey encounters, yet this approach does not account for successful predator attack resulting in prey mortality. An exception is a prey kill site that reflects an encounter resulting in mortality, but obtaining information on kill sites is expensive and requires time to accumulate adequate sample sizes.We illustrate an alternative approach using predator scat locations and their contents to quantify spatial predation risk for elk(Cervus canadensis) from multiple predators in the Rocky Mountains of Alberta, Canada. We surveyed over 1300 km to detect scats of bears (Ursus arctos/U.americanus), cougars (Puma concolor), coyotes (Canis latrans), and wolves (C.lupus). To derive spatial predation risk, we combined predictions of scat‐based resource selection functions (RSFs) weighted by predator abundance with predictions that a predator‐specific scat in a location contained elk. We evaluated the scat‐based predictions of predation risk by correlating them to predictions based on elk kill sites. We also compared scat‐based predation risk on summer ranges of elk following three migratory tactics for consistency with telemetry‐based metrics of predation risk and cause‐specific mortality of elk.We found a strong correlation between the scat‐based approach presented here and predation risk predicted by kill sites and (r = .98,p < .001). Elk migrating east of the Ya Ha Tinda winter range were exposed to the highest predation risk from cougars, resident elk summering on the Ya Ha Tinda winter range were exposed to the highest predation risk from wolves and coyotes, and elk migrating west to summer in Banff National Park were exposed to highest risk of encountering bears, but it was less likely to find elk in bear scats than in other areas. These patterns were consistent with previous estimates of spatial risk based on telemetry of collared predators and recent cause‐specific mortality patterns in elk.A scat‐based approach can provide a cost‐efficient alternative to kill sites of quantifying broad‐scale, spatial patterns in risk of predation for prey particularly in multiple predator species systems. 
    more » « less
  4. Disturbances such as disease can reshape communities through interruption of ecological interactions. Changes to population demographics alter how effectively a species performs its ecological role. While a population may recover in density, this may not translate to recovery of ecological function. In 2013, a sea star wasting syndrome outbreak caused mass mortality of the keystone predator Pisaster ochraceus on the North American Pacific coast. We analyzed sea star counts, biomass, size distributions, and recruitment from long-term intertidal monitoring sites from San Diego to Alaska to assess regional trends in sea star recovery following the outbreak. Recruitment, an indicator of population recovery, has been spatially patchy and varied within and among regions of the coast. Despite sea star counts approaching predisease numbers, sea star biomass, a measure of predation potential on the mussel Mytilus californianus, has remained low. This indicates that post-outbreak populations have not regained their full predation pressure. The regional variability in percent of recovering sites suggested differences in factors promoting sea star recovery between regions but did not show consistent patterns in postoutbreak recruitment on a coast-wide scale. These results shape predictions of where changes in community composition are likely to occur in years following the disease outbreak and provide insight into how populations of keystone species resume their ecological roles following mortality-inducing disturbances. 
    more » « less
  5. Predation is ubiquitous on coral reefs. Among the most charismatic group of reef predators are the top predatory fishes, including sharks and large-bodied bony fishes. Despite the threat presented by top predators, data describing their realized effects on reef community structure and functioning are challenging to produce. Many innovative studies have capitalized on natural experimental conditions to explore predator effects on reefs. Gradients in predator density have been created by spatial patterning of fisheries management. Evidence of prey release has been observed across some reefs, namely that potential prey increase in density when predator density is reduced. While such studies search for evidence of prey release among broad groups or guilds of potential prey, a subset of studies have sought evidence of release at finer population levels. We find that some groups of fishes are particularly vulnerable to the effects of predators and more able to capitalize demographically when predator density is reduced. For example, territorial damselfish appear to realize reliable population expansion with the reduction in predator density, likely because their aggressive, defensive behavior makes them distinctly vulnerable to predation. Relatedly, individual fishes that suffer from debilitating conditions, such as heavy parasite loads, appear to realize relatively stronger levels of prey release with reduced predator density. Studying the effects of predators on coral reefs remains a timely pursuit, and we argue that efforts to focus on the specifics of vulnerability to predation among potential prey and other context-specific dimensions of mortality hold promise to expand our knowledge. 
    more » « less