skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Software Defined Radio-Based Wireless Sensing System
In this paper, we investigate the application of using software-defined radio (SDR) and surface acoustic wave (SAW) device for wireless measurement of the response of in situ sensors. SDR uses software to realize different communication functions. After collecting the magnitude and phase of the response at discrete frequencies, we apply inverse Fourier transform to analyze the time domain responses which, in turn, allows for monitoring the changes of the response of the in situ sensor. We employ microwave signal flow graph concepts to improve the quality of the received signals. Comparing the normalized results obtained by SDR with those obtained from a commercial vector network analyzer (VNA), we demonstrate that the results are sufficiently close, and the SDR-based experiments can provide satisfactory measurement of the in-situ sensors. The objective is to eventually employ this wireless measurement system for soil nutrient sensing.  more » « less
Award ID(s):
1841558
PAR ID:
10355048
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Boon-Chong Seet
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
17
ISSN:
1424-8220
Page Range / eLocation ID:
6455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Passive remote sensing services are indispensable in modern society as they provide crucial information for Earth science and climate studies. In parallel, modern society also depends heavily on active wireless communication technologies for daily routines, with emerging technologies such as 5G further increasing this dependence. Unfortunately, the growth of active wireless systems often increases radio frequency interference (RFI) experienced by passive systems. This necessitates development of coexistence techniques and creation of new technology that enhances the existing and future wireless infrastructure. To study this problem, we are developing a unique testbed for collecting remote sensing datasets with ground truth in real-world settings, which will enable training, optimization, and benchmarking the coexistence solutions. The testbed includes (1) a software defined radio (SDR) based radiometer, incorporated with a dual-polarized microwave antenna operating in the L-band (1400 MHz–1427 MHz) and (2) prototyping SDR-based communication systems. This paper presents design and implementation of such radiometer from an unmanned aircraft system (UAS) for supporting different scenarios and geometries. 
    more » « less
  2. Abstract Surface acoustic waves (SAWs) have shown great potential for developing sensors for structural health monitoring (SHM) and lab‐on‐a‐chip (LOC) applications. Existing SAW sensors mainly rely on measuring the frequency shifts of high‐frequency (e.g., >0.1 GHz) resonance peaks. This study presents frequency‐locked wireless multifunctional SAW sensors that enable multiple wireless sensing functions, including strain sensing, temperature measurement, water presence detection, and vibration sensing. These sensors leverage SAW resonators on piezoelectric chips, inductive coupling‐based wireless power transmission, and, particularly, a frequency‐locked wireless sensing mechanism that works at low frequencies (e.g., <0.1 GHz). This mechanism locks the input frequency on the slope of a sensor's reflection spectrum and monitors the reflection signal's amplitude change induced by the changes of sensing parameters. The proof‐of‐concept experiments show that these wireless sensors can operate in a low‐power active mode for on‐demand wireless strain measurement, temperature sensing, and water presence detection. Moreover, these sensors can operate in a power‐free passive mode for vibration sensing, with results that agree well with laser vibrometer measurements. It is anticipated that the designs and mechanisms of the frequency‐locked wireless SAW sensors will inspire researchers to develop future wireless multifunctional sensors for SHM and LOC applications. 
    more » « less
  3. ABSTRACT The Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale Deployment (COSMOS) platform is a programmable city-scale shared multiuser advanced wireless testbed that is being deployed in New York City [1]. Open APIs and programmability across all the technology components and protocol layers in COSMOS will enable researchers to explore 5G technologies in a real world environment. A key feature of COSMOS is its dark fiber based optical x-haul network that enables both highly flexible, user defined network topologies as well as experimentation directly in the optical physical layer. A paper on the COSMOS optical architecture was previously presented in [2]. In this talk, we briefly introduce COSMOS’ optical x-haul network with SDN control, and its integration with the software-defined radio (SDR) and mobile edge cloud. 
    more » « less
  4. Modern aircraft heavily rely on several wireless technologies for communications, control, and navigation. Researchers demonstrated vulnerabilities in many aviation systems. However, the resilience of the aircraft landing systems to adversarial wireless attacks have not yet been studied in the open literature, despite their criticality and the increasing availability of low-cost software-defined radio (SDR) platforms. In this paper, we investigate the vulnerability of aircraft instrument landing systems (ILS) to wireless attacks. We show the feasibility of spoofing ILS radio signals using commercially-available SDR, causing last-minute go around decisions, and even missing the landing zone in low-visibility scenarios. We demonstrate on aviation-grade ILS receivers that it is possible to fully and in fine-grain control the course deviation indicator as displayed by the ILS receiver, in real-time. We analyze the potential of both an overshadowing attack and a lower-power single-tone attack. In order to evaluate the complete attack, we develop a tightly-controlled closed-loop ILS spoofer that adjusts the adversary's transmitted signals as a function of the aircraft GPS location, maintaining power and deviation consistent with the adversary's target position, causing an undetected off-runway landing. We systematically evaluate the performance of the attack against an FAA certified flight-simulator (X-Plane)'s AI-based autoland feature and demonstrate systematic success rate with offset touchdowns of 18 meters to over 50 meters. 
    more » « less
  5. Passive microwave remote sensing plays an essential role in providing valuable information about the Earth’s surface, particularly for agriculture, water management, forestry, and other environmental fields. One of the key requirements for precision agricultural applications is the availability of field- scale high-resolution remote sensing data products. With the recent development of reliable unmanned aircraft systems (UAS), airborne deployment of remote sensing sensors has become more widespread to provide such products. With this in mind, we developed a UAS-based dual H-pol (hori- zontal) and V-pol (vertical) polarized radiometer operating in L-band (1400-1427 MHz). The custom dual-polarized an- tenna acquires surface emission response through a software- defined radio (SDR). This SDR-based system provides full control over the data acquisition parameters such as band- width, sampling frequency, and data size. Radio frequency interference (RFI) poses a significant challenge in radiometric measurements, requiring post-processing of the full-band radiometer data to identify and eliminate RFI-contaminated measurements, thus ensuring accurate Earth emission read- ings.. In this paper, we implemented near-real-time RFI detection onboard during the flight to accelerate the post- processing. The altitude and the speed of the UAS can be varied to achieve desired ground resolution for the measure- ment. This paper presents the full custom design and develop- ment of a lightweight SDR-based UAS-borne radiometer for precision agriculture. Additionally, we introduce the concept of an agile radiometer implemented from a small UAS that can serve as a testbed for both current and future spaceborne missions. 
    more » « less