skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling and Evaluating Beneficial Matches between Excess Renewable Power Generation and Non-Electric Heat Loads in Remote Alaska Microgrids
Many Alaska communities rely on heating oil for heat and diesel fuel for electricity. For remote communities, fuel must be barged or flown in, leading to high costs. While renewable energy resources may be available, the variability of wind and solar energy limits the amount that can be used coincidentally without adequate storage. This study developed a decision-making method to evaluate beneficial matches between excess renewable generation and non-electric dispatchable loads, specifically heat loads such as space heating, water heating and treatment, and clothes drying in three partner communities. Hybrid Optimization Model for Multiple Electric Renewables (HOMER) Pro was used to model potential excess renewable generation based on current generation infrastructure, renewable resource data, and community load. The method then used these excess generation profiles to quantify how closely they align with modeled or actual heat loads, which have inherent thermal storage capacity. Of 236 possible combinations of solar and wind capacity investigated in the three communities, the best matches were seen between excess electricity from high-penetration wind generation and heat loads for clothes drying and space heating. The worst matches from this study were from low penetrations of solar (25% of peak load) with all heat loads.  more » « less
Award ID(s):
1740075
PAR ID:
10355101
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
14
Issue:
7
ISSN:
2071-1050
Page Range / eLocation ID:
3884
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High transportation costs make energy and food expensive in remote communities worldwide, especially in high-latitude Arctic climates. Past attempts to grow food indoors in these remote areas have proven uneconomical due to the need for expensive imported diesel for heating and electricity. This study aims to determine whether solar photovoltaic (PV) electricity can be used affordably to power container farms integrated with a remote Arctic community microgrid. A mixed-integer linear optimization model (FEWMORE: Food–Energy–Water Microgrid Optimization with Renewable Energy) has been developed to minimize the capital and maintenance costs of installing solar photovoltaics (PV) plus electricity storage and the operational costs of purchasing electricity from the community microgrid to power a container farm. FEWMORE expands upon previous models by simulating demand-side management of container farm loads. Its results are compared with those of another model (HOMER) for a test case. FEWMORE determined that 17 kW of solar PV was optimal to power the farm loads, resulting in a total annual cost decline of ~14% compared with a container farm currently operating in the Yukon. Managing specific loads appropriately can reduce total costs by ~18%. Thus, even in an Arctic climate, where the solar PV system supplies only ~7% of total load during the winter and ~25% of the load during the entire year, investing in solar PV reduces costs. 
    more » « less
  2. null (Ed.)
    Abstract If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980–2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries’ electricity demand in 72–91% of hours (83–94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation. 
    more » « less
  3. We analyze 36 years of global, hourly weather data (1980–2015) to quantify the covariability of solar and wind resources as a function of time and location, over multi-decadal time scales and up to continental length scales. Assuming minimal excess generation, lossless transmission, and no other generation sources, the analysis indicates that wind-heavy or solar-heavy U.S.-scale power generation portfolios could in principle provide ∼80% of recent total annual U.S. electricity demand. However, to reliably meet 100% of total annual electricity demand, seasonal cycles and unpredictable weather events require several weeks’ worth of energy storage and/or the installation of much more capacity of solar and wind power than is routinely necessary to meet peak demand. To obtain ∼80% reliability, solar-heavy wind/solar generation mixes require sufficient energy storage to overcome the daily solar cycle, whereas wind-heavy wind/solar generation mixes require continental-scale transmission to exploit the geographic diversity of wind. Policy and planning aimed at providing a reliable electricity supply must therefore rigorously consider constraints associated with the geophysical variability of the solar and wind resource—even over continental scales. 
    more » « less
  4. null (Ed.)
    A variety of methods have been proposed to assist the integration of microgrid in flow shop systems with the goal of attaining eco-friendly operations. There is still a lack of integrated planning models in which renewable portfolio, microgrid capacity and production plan are jointly optimized under power demand and generation uncertainty. This paper aims to develop a two-stage, mixed-integer programming model to minimize the levelized cost of energy of a flow shop powered by onsite renewables. The first stage minimizes the annual energy use subject to a job throughput requirement. The second stage aims at sizing wind turbine, solar panels and battery units to meet the hourly electricity needs during a year. Climate analytics are employed to characterize the stochastic wind and solar capacity factor on an hourly basis. The model is tested in four locations with a wide range of climate conditions. Three managerial insights are derived from the numerical experiments. First, time-of-use tariff significantly stimulates the wind penetration in locations with medium or low wind speed. Second, regardless of the climate conditions, large-scale battery storage units are preferred under time-of-use rate but it is not the case under a net metering policy. Third, wind- and solar-based microgrid is scalable and capable of meeting short-term demand variation and long-term load growth with a stable energy cost rate. 
    more » « less
  5. We determine the energy storage needed to achieve self sufficiency to a given reliability as a function of excess capacity in a combined solar-energy generation and storage system. Based on 40 years of solar-energy data for the St. Louis region, we formulate a statistical model that we use to generate synthetic insolation data over millions of years. We use these data to monitor the energy depletion in the storage system near the winter solstice. From this information, we develop explicit formulas for the required storage and the nature of cost-optimized system configurations as a function of reliability and the excess generation capacity. Minimizing the cost of the combined generation and storage system gives the optimal mix of these two constituents. For an annual failure rate of less than 3%, it is sufficient to have a solar generation capacity that slightly exceeds the daily electrical load at the winter solstice, together with a few days of storage. 
    more » « less