skip to main content


Title: Decision Making in Non-Stationary Environments with Policy-Augmented Monte Carlo Tree Search
Decision-making under uncertainty (DMU) is present in many important problems. An open challenge is DMU in non-stationary environments, where the dynamics of the environment can change over time. Reinforcement Learning (RL), a popular approach for DMU problems, learns a policy by interacting with a model of the environment offline. Unfortunately, if the environment changes the policy can become stale and take sub-optimal actions, and relearning the policy for the updated environment takes time and computational effort. An alternative is online planning approaches such as Monte Carlo Tree Search (MCTS), which perform their computation at decision time. Given the current environment, MCTS plans using high-fidelity models to determine promising action trajectories. These models can be updated as soon as environmental changes are detected to immediately incorporate them into decision making. However, MCTS’s convergence can be slow for domains with large state-action spaces. In this paper, we present a novel hybrid decision-making approach that combines the strengths of RL and planning while mitigating their weaknesses. Our approach, called Policy Augmented MCTS (PA-MCTS), integrates a policy’s actin-value estimates into MCTS, using the estimates to seed the action trajectories favored by the search. We hypothesize that PA-MCTS will converge more quickly than standard MCTS while making better decisions than the policy can make on its own when faced with nonstationary environments. We test our hypothesis by comparing PA-MCTS with pure MCTS and an RL agent applied to the classical CartPole environment. We find that PC-MCTS can achieve higher cumulative rewards than the policy in isolation under several environmental shifts while converging in significantly fewer iterations than pure MCTS.  more » « less
Award ID(s):
1814958
NSF-PAR ID:
10355141
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Multi-disciplinary Conference on Reinforcement Learning and Decision Making
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sequential decision-making under uncertainty is present in many important problems. Two popular approaches for tackling such problems are reinforcement learning and online search (e.g., Monte Carlo tree search). While the former learns a policy by interacting with the environment (typically done before execution), the latter uses a generative model of the environment to sample promising action trajectories at decision time. Decision-making is particularly challenging in non-stationary environments, where the environment in which an agent operates can change over time. Both approaches have shortcomings in such settings -- on the one hand, policies learned before execution become stale when the environment changes and relearning takes both time and computational effort. Online search, on the other hand, can return sub-optimal actions when there are limitations on allowed runtime. In this paper, we introduce \textit{Policy-Augmented Monte Carlo tree search} (PA-MCTS), which combines action-value estimates from an out-of-date policy with an online search using an up-to-date model of the environment. We prove theoretical results showing conditions under which PA-MCTS selects the one-step optimal action and also bound the error accrued while following PA-MCTS as a policy. We compare and contrast our approach with AlphaZero, another hybrid planning approach, and Deep Q Learning on several OpenAI Gym environments. Through extensive experiments, we show that under non-stationary settings with limited time constraints, PA-MCTS outperforms these baselines. 
    more » « less
  2. A fundamental (and largely open) challenge in sequential decision-making is dealing with non-stationary environments, where exogenous environmental conditions change over time. Such problems are traditionally modeled as non-stationary Markov decision processes (NSMDP). However, existing approaches for decision-making in NSMDPs have two major shortcomings: first, they assume that the updated environmental dynamics at the current time are known (although future dynamics can change); and second, planning is largely pessimistic, i.e., the agent acts ``safely'' to account for the non-stationary evolution of the environment. We argue that both these assumptions are invalid in practice -- updated environmental conditions are rarely known, and as the agent interacts with the environment, it can learn about the updated dynamics and avoid being pessimistic, at least in states whose dynamics it is confident about. We present a heuristic search algorithm called \textit{Adaptive Monte Carlo Tree Search (ADA-MCTS)} that addresses these challenges. We show that the agent can learn the updated dynamics of the environment over time and then act as it learns, i.e., if the agent is in a region of the state space about which it has updated knowledge, it can avoid being pessimistic. To quantify ``updated knowledge,'' we disintegrate the aleatoric and epistemic uncertainty in the agent's updated belief and show how the agent can use these estimates for decision-making. We compare the proposed approach with the multiple state-of-the-art approaches in decision-making across multiple well-established open-source problems and empirically show that our approach is faster and highly adaptive without sacrificing safety. 
    more » « less
  3. Many transit agencies operating paratransit and microtransit ser-vices have to respond to trip requests that arrive in real-time, which entails solving hard combinatorial and sequential decision-making problems under uncertainty. To avoid decisions that lead to signifi-cant inefficiency in the long term, vehicles should be allocated to requests by optimizing a non-myopic utility function or by batching requests together and optimizing a myopic utility function. While the former approach is typically offline, the latter can be performed online. We point out two major issues with such approaches when applied to paratransit services in practice. First, it is difficult to batch paratransit requests together as they are temporally sparse. Second, the environment in which transit agencies operate changes dynamically (e.g., traffic conditions can change over time), causing the estimates that are learned offline to become stale. To address these challenges, we propose a fully online approach to solve the dynamic vehicle routing problem (DVRP) with time windows and stochastic trip requests that is robust to changing environmental dynamics by construction. We focus on scenarios where requests are relatively sparse-our problem is motivated by applications to paratransit services. We formulate DVRP as a Markov decision process and use Monte Carlo tree search to evaluate actions for any given state. Accounting for stochastic requests while optimizing a non-myopic utility function is computationally challenging; indeed, the action space for such a problem is intractably large in practice. To tackle the large action space, we leverage the structure of the problem to design heuristics that can sample promising actions for the tree search. Our experiments using real-world data from our partner agency show that the proposed approach outperforms existing state-of-the-art approaches both in terms of performance and robustness. 
    more » « less
  4. Circuit linearity calibration can represent a set of high-dimensional search problems if the observability is limited. For example, linearity calibration of digital-to-time converters (DTC), an essential building block of modern digital phaselocked loops (DPLLs), is an example of a high-dimensional search problem as difficulty of measuring ps delays hinders prior methods that calibrate stage by stage. And, a calibrated DTC can become nonlinear again due to changes in temperature (T) and power supply voltage (V). Prior work reports a deep reinforcement learning framework that is capable of performing DTC linearity calibration with nonlinear calibration banks; however, this prior work does not address maintaining calibration in the face of temperature and supply voltage variations. In this paper, we present a meta-reinforcement learning (RL) method that can enable the RL agent to quickly adapt to a new environment when the temperature and/or voltage change. Inspired by the Style Generative Adversarial Networks (StyleGANs), we propose to treat temperature and voltage changes as the styles of the circuits. In contrast to traditional methods employing circuit sensors to detect changes in T and V, we utilize a machine learning (ML) sensor, to implicitly infer a wide range of environmental changes. The style information from the ML sensor is subsequently injected into a small portion of the policy network, modulating its weights. As a proof of concept, we first designed a 5-bit DTC at the normal voltage (1V) and normal temperature (27℃) corner (NVNT) as the environment. The RL agent begins its training in the NVNT environment. Following this initial phase, the agent is then tasked with adapting to environments with different temperature and supply voltages. Our results show that the proposed technique can reduce the Integral Non-Linearity (INL) to less than 0.5 LSB within 10, 000 search steps in a changed environment. Compared to starting learning from a random initialized policy and a trained policy, the proposed meta-RL approach takes 63% and 47% fewer steps to complete the linearity calibration, respectively. Our method is also applicable to the calibration of many other kinds of analog and RF circuits. 
    more » « less
  5. This paper investigates online stochastic planning for problems with large factored state and action spaces. One promising approach in recent work estimates the quality of applicable actions in the current state through aggregate simulation from the states they reach. This leads to significant speedup, compared to search over concrete states and actions, and suffices to guide decision making in cases where the performance of a random policy is informative of the quality of a state. The paper makes two significant improvements to this approach. The first, taking inspiration from lifted belief propagation, exploits the structure of the problem to derive a more compact computation graph for aggregate simulation. The second improvement replaces the random policy embedded in the computation graph with symbolic variables that are optimized simultaneously with the search for high quality actions. This expands the scope of the approach to problems that require deep search and where information is lost quickly with random steps. An empirical evaluation shows that these ideas significantly improve performance, leading to state of the art performance on hard planning problems. 
    more » « less