skip to main content

This content will become publicly available on May 1, 2025

Title: Decision Making in Non-Stationary Environments with Policy-Augmented Search
Sequential decision-making under uncertainty is present in many important problems. Two popular approaches for tackling such problems are reinforcement learning and online search (e.g., Monte Carlo tree search). While the former learns a policy by interacting with the environment (typically done before execution), the latter uses a generative model of the environment to sample promising action trajectories at decision time. Decision-making is particularly challenging in non-stationary environments, where the environment in which an agent operates can change over time. Both approaches have shortcomings in such settings -- on the one hand, policies learned before execution become stale when the environment changes and relearning takes both time and computational effort. Online search, on the other hand, can return sub-optimal actions when there are limitations on allowed runtime. In this paper, we introduce \textit{Policy-Augmented Monte Carlo tree search} (PA-MCTS), which combines action-value estimates from an out-of-date policy with an online search using an up-to-date model of the environment. We prove theoretical results showing conditions under which PA-MCTS selects the one-step optimal action and also bound the error accrued while following PA-MCTS as a policy. We compare and contrast our approach with AlphaZero, another hybrid planning approach, and Deep Q Learning on several OpenAI Gym environments. Through extensive experiments, we show that under non-stationary settings with limited time constraints, PA-MCTS outperforms these baselines.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
International Conference on Autonomous Agents and Multiagent Systems
Medium: X
New Zealand
Sponsoring Org:
National Science Foundation
More Like this
  1. Decision-making under uncertainty (DMU) is present in many important problems. An open challenge is DMU in non-stationary environments, where the dynamics of the environment can change over time. Reinforcement Learning (RL), a popular approach for DMU problems, learns a policy by interacting with a model of the environment offline. Unfortunately, if the environment changes the policy can become stale and take sub-optimal actions, and relearning the policy for the updated environment takes time and computational effort. An alternative is online planning approaches such as Monte Carlo Tree Search (MCTS), which perform their computation at decision time. Given the current environment, MCTS plans using high-fidelity models to determine promising action trajectories. These models can be updated as soon as environmental changes are detected to immediately incorporate them into decision making. However, MCTS’s convergence can be slow for domains with large state-action spaces. In this paper, we present a novel hybrid decision-making approach that combines the strengths of RL and planning while mitigating their weaknesses. Our approach, called Policy Augmented MCTS (PA-MCTS), integrates a policy’s actin-value estimates into MCTS, using the estimates to seed the action trajectories favored by the search. We hypothesize that PA-MCTS will converge more quickly than standard MCTS while making better decisions than the policy can make on its own when faced with nonstationary environments. We test our hypothesis by comparing PA-MCTS with pure MCTS and an RL agent applied to the classical CartPole environment. We find that PC-MCTS can achieve higher cumulative rewards than the policy in isolation under several environmental shifts while converging in significantly fewer iterations than pure MCTS. 
    more » « less
  2. A fundamental (and largely open) challenge in sequential decision-making is dealing with non-stationary environments, where exogenous environmental conditions change over time. Such problems are traditionally modeled as non-stationary Markov decision processes (NSMDP). However, existing approaches for decision-making in NSMDPs have two major shortcomings: first, they assume that the updated environmental dynamics at the current time are known (although future dynamics can change); and second, planning is largely pessimistic, i.e., the agent acts ``safely'' to account for the non-stationary evolution of the environment. We argue that both these assumptions are invalid in practice -- updated environmental conditions are rarely known, and as the agent interacts with the environment, it can learn about the updated dynamics and avoid being pessimistic, at least in states whose dynamics it is confident about. We present a heuristic search algorithm called \textit{Adaptive Monte Carlo Tree Search (ADA-MCTS)} that addresses these challenges. We show that the agent can learn the updated dynamics of the environment over time and then act as it learns, i.e., if the agent is in a region of the state space about which it has updated knowledge, it can avoid being pessimistic. To quantify ``updated knowledge,'' we disintegrate the aleatoric and epistemic uncertainty in the agent's updated belief and show how the agent can use these estimates for decision-making. We compare the proposed approach with the multiple state-of-the-art approaches in decision-making across multiple well-established open-source problems and empirically show that our approach is faster and highly adaptive without sacrificing safety. 
    more » « less
  3. Abstract

    Supervised machine learning via artificial neural network (ANN) has gained significant popularity for many geomechanics applications that involves multi‐phase flow and poromechanics. For unsaturated poromechanics problems, the multi‐physics nature and the complexity of the hydraulic laws make it difficult to design the optimal setup, architecture, and hyper‐parameters of the deep neural networks. This paper presents a meta‐modeling approach that utilizes deep reinforcement learning (DRL) to automatically discover optimal neural network settings that maximize a pre‐defined performance metric for the machine learning constitutive laws. This meta‐modeling framework is cast as a Markov Decision Process (MDP) with well‐defined states (subsets of states representing the proposed neural network (NN) settings), actions, and rewards. Following the selection rules, the artificial intelligence (AI) agent, represented in DRL via NN, self‐learns from taking a sequence of actions and receiving feedback signals (rewards) within the selection environment. By utilizing the Monte Carlo Tree Search (MCTS) to update the policy/value networks, the AI agent replaces the human modeler to handle the otherwise time‐consuming trial‐and‐error process that leads to the optimized choices of setup from a high‐dimensional parametric space. This approach is applied to generate two key constitutive laws for the unsaturated poromechanics problems: (1) the path‐dependent retention curve with distinctive wetting and drying paths. (2) The flow in the micropores, governed by an anisotropic permeability tensor. Numerical experiments have shown that the resultant ML‐generated material models can be integrated into a finite element (FE) solver to solve initial‐boundary‐value problems as replacements of the hand‐craft constitutive laws.

    more » « less
  4. null (Ed.)
    Monte-Carlo planning, as exemplified by Monte-Carlo Tree Search (MCTS), has demonstrated remarkable performance in applications with finite spaces. In this paper, we consider Monte-Carlo planning in an environment with continuous state-action spaces, a much less understood problem with important applications in control and robotics. We introduce POLY-HOOT , an algorithm that augments MCTS with a continuous armed bandit strategy named Hierarchical Optimistic Optimization (HOO) (Bubeck et al., 2011). Specifically, we enhance HOO by using an appropriate polynomial, rather than logarithmic, bonus term in the upper confidence bounds. Such a polynomial bonus is motivated by its empirical successes in AlphaGo Zero (Silver et al., 2017b), as well as its significant role in achieving theoretical guarantees of finite space MCTS (Shah et al., 2019). We investigate, for the first time, the regret of the enhanced HOO algorithm in non-stationary bandit problems. Using this result as a building block, we establish non-asymptotic convergence guarantees for POLY-HOOT : the value estimate converges to an arbitrarily small neighborhood of the optimal value function at a polynomial rate. We further provide experimental results that corroborate our theoretical findings. 
    more » « less
  5. Many transit agencies operating paratransit and microtransit ser-vices have to respond to trip requests that arrive in real-time, which entails solving hard combinatorial and sequential decision-making problems under uncertainty. To avoid decisions that lead to signifi-cant inefficiency in the long term, vehicles should be allocated to requests by optimizing a non-myopic utility function or by batching requests together and optimizing a myopic utility function. While the former approach is typically offline, the latter can be performed online. We point out two major issues with such approaches when applied to paratransit services in practice. First, it is difficult to batch paratransit requests together as they are temporally sparse. Second, the environment in which transit agencies operate changes dynamically (e.g., traffic conditions can change over time), causing the estimates that are learned offline to become stale. To address these challenges, we propose a fully online approach to solve the dynamic vehicle routing problem (DVRP) with time windows and stochastic trip requests that is robust to changing environmental dynamics by construction. We focus on scenarios where requests are relatively sparse-our problem is motivated by applications to paratransit services. We formulate DVRP as a Markov decision process and use Monte Carlo tree search to evaluate actions for any given state. Accounting for stochastic requests while optimizing a non-myopic utility function is computationally challenging; indeed, the action space for such a problem is intractably large in practice. To tackle the large action space, we leverage the structure of the problem to design heuristics that can sample promising actions for the tree search. Our experiments using real-world data from our partner agency show that the proposed approach outperforms existing state-of-the-art approaches both in terms of performance and robustness. 
    more » « less