skip to main content


Title: Evaluation of a Nonlinear Optimization Method for Measuring Human Movement Using Inertial Measurement Units
Inertial measurement units (IMUs) are an alternative to traditional optical motion capture systems that allow for data collection outside the lab and continuous monitoring for daily activities. In this study, a non-linear least squares optimization was used to convert IMU measurements into joint kinematics. The optimization calculates joint angles simultaneously over all time frames by optimizing B-spline nodes, without integrating any IMU measurements. This approach enables an accurate solution that works well with noisy experimental IMU data since integration errors are eliminated.  more » « less
Award ID(s):
1805896
NSF-PAR ID:
10355173
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 9th World Congress of Biomechanics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The objective of this study was to test the feasibility of using a pair of wearable inertial measurement unit (IMU) sensors to accurately capture dynamic joint motion data during simulated occupational conditions. Eleven subjects (5 males and 6 females) performed repetitive neck, low-back, and shoulder motions simulating low- and high-difficulty occupational tasks in a laboratory setting. Kinematics for each of the 3 joints were measured via IMU sensors in addition to a “gold standard” passivemarker optical motion capture system. The IMU accuracy was benchmarked relative to the optical motion capture system, and IMU sensitivity to low- and high-difficulty tasks was evaluated. The accuracy of the IMU sensors was found to be very good on average, but significant positional drift was observed in some trials. In addition, IMU measurements were shown to be sensitive to differences in task difficulty in all 3 joints (P < .05). These results demonstrate the feasibility for using wearable IMU sensors to capture kinematic exposures as potential indicators of occupational injury risk. Velocities and accelerations demonstrate the most potential for developing risk metrics since they are sensitive to task difficulty and less sensitive to drift than rotational position measurements. 
    more » « less
  2. Injuries are often associated with rapid body segment movements. We compared Certus motion capture and APDM inertial measurement unit (IMU) measurements of tibiofemoral angle and angular velocity changes during simulated pivot landings (i.e., ~70 ms peak) of nine cadaver knees dissected free of skin, subcutaneous fat, and muscle. Data from a total of 852 trials were compared using the Bland–Altman limits of agreement (LoAs): the Certus system was considered the gold standard measure for the angle change measurements, whereas the IMU was considered the gold standard for angular velocity changes. The results show that, although the mean peak IMU knee joint angle changes were slightly underestimated (2.1° for flexion, 0.2° for internal rotation, and 3.0° for valgus), the LoAs were large, ranging from 35.9% to 49.8%. In the case of the angular velocity changes, Certus had acceptable accuracy in the sagittal plane, with LoAs of ±54.9°/s and ±32.5°/s for the tibia and femur. For these rapid motions, we conclude that, even in the absence of soft tissues, the IMUs could not reliably measure these peak 3D knee angle changes; Certus measurements of peak tibiofemoral angular velocity changes depended on both the magnitude of the velocity and the plane of measurement. 
    more » « less
  3. Abstract

    We develop a Finite Horizon Maximum Likelihood Estimator (FHMLE) that fuses Inertial Measurement Unit (IMU) and radio frequency (RF) measurements over a sliding window of finite length for three‐dimensional navigation. Available RF data includes pseudo–ranges, angles of transmission (AoT), and Doppler shift measurements. The navigation estimates are obtained by solving a finite‐dimensional nonlinear optimization using a primal‐dual interior point algorithm (PDIP). The benefits of the proposed estimation method are highlighted using simulations results comparing the FHMLE approach with an Unscented Kalman Filter (UKF), in a scenario where an aircraft approaches a carrier, with RF measurements from beacons aboard the carrier, and low‐cost IMU measurements aboard the aircraft. When the Geometric Dilution of Precision is large, we found that the FHMLE is able to achieve smaller estimation errors than the UKF, which tends to carry a bias throughout the trajectory.

     
    more » « less
  4. Inertial measurement units (IMUs) could provide an attractive alternative to video motion capture systems for measuring walking in a non-laboratory setting. This study applied an optimization method to an 18-DOF lower body model to convert synthetic IMU data into corresponding joint angles. 
    more » « less
  5. Inertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with mainstream motion-tracking hardware to measure the overall performance of human movement based on joint axis-angle representations of limb rotation. This work describes an alternative approach to representing three-dimensional rotations using a normalized vector around which an identified joint angle defines the overall rotation, rather than a traditional Euler angle approach. Furthermore, IMUs allow for the direct measurement of joint angular velocities, offering the opportunity to increase the accuracy of instantaneous axis of rotation estimations. Although the axis-angle representation requires vector quotient algebra (quaternions) to define rotation, this approach may be preferred for many graphics, vision, and virtual reality software applications. The analytical method was validated with laboratory data gathered from an infant dummy leg’s flexion and extension knee movements and applied to a living subject’s upper limb movement. The results showed that the novel approach could reasonably handle a simple case and provide a detailed analysis of axis-angle migration. The described algorithm could play a notable role in the biomechanical analysis of human joints and offers a harbinger of IMU-based biosensors that may detect pathological patterns of joint disease and injury.

     
    more » « less